Galveston Bay Estuary Resilience Assessment Report

Prepared by Houston Advanced Research Center for the Galveston Bay Estuary Program

February 2022

Sunset over Galveston Bay. Photo by Van Williams, Unsplash

and the second second

Texas Commission on Environmental Quality (TCEQ) Grant Agreement 582-19-90217

Estuary Resilience Assessment

Deliverable: Final Galveston Bay Estuary Resilience Assessment

Prepared by Geotechnology Research Institute Houston Advanced Research Center (HARC) Dr. Stephanie Glenn and Dr. Erin Kinney 8801 Gosling Drive The Woodlands, Texas 77381

Prepared for

TCEQ Galveston Bay Estuary Program (GBEP) Lindsey Lippert, Project Manager 17041 El Camino Real, Ste. 210 Houston, Texas 77058

February 2022

The preparation of this report was financed through grants from the TCEQ and the U.S. Environmental Protection Agency (EPA)

The Galveston Bay Estuary Resilience Assessment is a stakeholder-driven project; the ideas and thoughts on stressors, risks, and management strategies were generated by stakeholders in the expert work group and do not necessarily reflect the official policy or position of TCEQ.

Coastal resilience is the ability of our coastal economic, social and ecological systems to withstand change and quickly recover from disaster¹. Resilient systems are managed in ways that anticipate and plan for future disruptions, allowing the system to adapt and thrive in the future. Estuaries are dynamic environments with constantly changing tides, salinity regimes, fluctuating fish and wildlife populations, and habitats that migrate across landscapes. Resilient coastal communities manage their natural habitats in a manner that enables estuarine ecosystems and the adjacent built environment to better tolerate disturbances and promote estuarine resilience.

The Galveston Bay Estuary Resilience Assessment is a stakeholder-driven project with the purpose of assessing a series of coastal resilience criteria against the goals, objectives, and actions in *The Galveston Bay Plan, 2nd Edition* (GBP). This report is meant to compliment the GBP and provide resiliency adaptation recommendations for implementers of the GBP. This report was developed in coordination with subject matter experts and members of the Galveston Bay Council (GBC) and its subcommittees through a series of workshops with questions and discussion topics. For guidance, see the U. S. Environmental Protection Agency's (EPA) "<u>Being Prepared for Climate Change: A Workbook for Developing Risk-Based Adaptation Plans</u>."

HARC established a work group of stakeholder experts to obtain input used in the development of a vulnerability assessment focused on coastal resilience. The group consisted of relevant representatives and subject matter experts from the GBC, subcommittees, and other state and regional interests, who provided input and guidance throughout the project to ensure it aligned with the goals and objectives of the GBP, the Comprehensive Conservation and Management Plan for GBEP. The work group had representation from the United States Geological Survey (USGS), Texas Parks and Wildlife Department (TPWD), Galveston Bay Foundation (GBF), the Houston-Galveston Area Council (H-GAC), the

¹ https://oceanservice.noaa.gov/ecosystems/resilience/

TCEQ Contract Number 582-19-90217
Galveston Bay Estuary Resilience Assessment - Final

Environmental Institute of Houston at the
University of Houston Clear Lake (EIH-UHCL),
Texas A&M University (TAMU), US Fish and
Wildlife Service (USFWS), Texas General Land
Office (GLO), Texas Water Development Board
(TWDB), and The Nature Conservancy (TNC).
Expertise representation was wide and varied,
including water resources, habitat restoration,
wetlands, social systems, and relative sea level
rise. A complete list is included in Table 1.
-

An initial invitational facilitated work group meeting was held to provide an overview and purpose of the project and ask for stakeholder input from participants. The purpose of the initial meeting was to gain local perspectives and information and identify concerns or interests to the work group regarding Galveston Bay for inclusion in the vulnerability assessment focused on coastal resilience. The initial meeting focused on establishing the context for the Galveston Bay Estuary Resilience Assessment, which involved identifying GBEP organizational goals susceptible to estuary stressors. The work group identified all the GBP priorities/goals as susceptible to estuary stressors (Table 2) (see Appendix A for the complete details on GBP Priorities). This initial brainstorming session focused on input and information on the Galveston Bay Estuary Resilience Assessment, providing participants an opportunity to identify, list, and provide feedback on the GBP

Table 1: Galveston Bay Estuary Resilience Assessment Work Group			
Organization	Expertise		
USGS	Water Resources		
EIH-UHCL	Water Resources/Ecology		
TPWD	Habitat Restoration		
GBF	Restoration		
TAMU AgriLife Ext	Habitat ecology		
H-GAC	Water Quality		
TPWD	Estuarine ecology		
TPWD	Kills and Spills		
USFWS	Estuarine ecology/restoration/conservation		
TAMUG	Relative sea level rise		
TAMU	Relative sea level rise & wetlands		
TAMUG	Phytoplankton/Freshwater Inflows		
TAMUG	Phytoplankton communities		
GBF	Social/Community		
Upper Coast Field - GLO	Coastal Biologist		
TCEQ	Coastal Programs Specialist		
Texas GLO	Coastal Resources		
TWDB	Inflows		
TNC	SLAMM, marine spatial planning		

priorities/goals, risk identification, and potential stressors.

The work group then moved on to risk identification, which involved discussing how estuary stressors will interact with the GBP priorities/goals and how the impacts of the risks may make it difficult for GBEP to meet the GBP priorities/goals. The work group identified and defined eleven estuary stressors through this brainstorming session (Figure 1) that the work group thought were impactful when discussing coastal resilience. The following stressors are the ones that the group determined Galveston Bay is facing now and/or in the future. **Changes to land use and the built environment (infrastructure)** is linked to population increase, but distinct from it in order to focus on changes to the land. *Chronic higher tides/nuisance flooding* refers to high water that is marine or estuarine water and is not related to storm surge. Increase in extreme events (coastal flooding/storm surge) refers to flooding events that are marine/estuarine water related to a storm event. *Increasing drought* relates to both chronic dry weather and episodic drought "events." Increasing inland flooding (largely *rain-based*) refers to freshwater flooding and distinguishes these events from the marine/estuarine nuisance flooding and from storm surge. *Ocean acidification* in the context of Galveston Bay has not been well studied. Here, we refer to the extent to which acidification of Gulf and ocean water and the processes that lead to it could lead to acidification of Galveston Bay water. The impacts discussed here are those for Galveston Bay waters. *Population increase* refers to the

Table 2: GBP Priorities/Goals

Engage Communities Ensure Safe and Aquatic Human Use: Increase public awareness of current public health risks/Reduce risk through watershed-based plans (WBPs) **Ensure Safe and Aquatic Human Use: Reduce NPS and PS (including wastewater** treatment facility (WWTF) and sanitary sewer system) pollution **Inform Science-Based Decision Making Protect and Sustain Living Resources:** Conserve, restore, and enhance vital habitats in the lower portion of the **Galveston Bay watershed Protect and Sustain Living Resources:** Ensure adequate quantities of freshwater reach Galveston Bay **Protect and Sustain Living Resources:** Sustain and restore native species populations

number of permanent residents and tourists in the Galveston Bay region. *Sea level rise and subsidence* refers to chronic, long-term rising marine/estuarine water that is caused by a combination of eustasy (the volume of the ocean based on water quantity and temperature) and subsidence (also referred to as Relative Sea Level Rise) in the Galveston Bay region. *Warmer summers* refers to an increase in both high daily air temperatures and average temperatures during the warmest part of the year. *Warmer waters* refers to the temperature of the water itself overall (i.e., not seasonally but rather daily), either due to increases in air temperature, reduction of cooler water inflows, etc. that would impact

organisms in the water. *Warmer winters* refers to an increase in both high daily air temperatures and average temperatures during the coolest part of the year.

Warmer S	ummers	Warme	r Winters	Warme	r Water	Increasir	ng Drought
Increasing flooding rain-bas	g inland (largely ed)	Incre extrem (co floodin su	ease in le events astal lg/storm rge)	Sea Leve Subsid	l Rise and ence	Chron tides/i floodi	ic higher nuisance ng
	Oc Acidif	ean ication	Popu Inc	ılation rease	Changes use and enviro (infrast	s to land the built nment ructure)	

Figure 1 The work group identified 11 estuary stressors facing Galveston Bay now and in the future

For each of the stressors, risks from the stressor on meeting the GBP priority were identified. So, for example, stakeholders were asked to consider: For the GBP priority/goal of Ensure Safe and Aquatic Human Use: Reduce NPS and PS (including WWTF and sanitary sewer system) Pollution, how would the stressor of Warmer Summers pose risks that might impact GBEP in being able to meet that goal? The work group determined that for this stressor and goal, the defined risks were: a) using more water for irrigation leading to increased runoff, b) warmer summer water, increased likelihood of fecal indicator bacteria, and increased frequency of water quality exceedances of screening levels and c) increased evapotranspiration – comprised integrity of water bodies.

The next step for the work group was to take the stressors and risks developed during the initial work group meeting and follow-ups, and convene for a second work group meeting to develop the risk analysis, which included selecting risks and stressors identified in the initial workshop and characterizing each risk to make an initial determination of consequence (impact) and probability (likelihood) of each risk. Risks were ranked on a qualitative scale for consequence and probability. For example, for the GBP priority/goal of Ensure Safe and Aquatic Human Use: Reduce NPS and PS (including WWTF and sanitary sewer system) Pollution, and the stressor of Warmer Summers, the work group identified the risk of warmer summer water leading to increased likelihood of fecal indicator bacteria and increased frequency of water quality exceedance of screening levels. This risk was evaluated as having a high probability of occurrence if the stressor of Warmer Summers occurs, and medium consequence. Consequence was viewed as the impact the risk would have on an organization's goal were it to occur. Low consequence meant life would not be majorly disrupted if the risk were to occur; the organization could adapt and meet its goals. High consequence was viewed as a major disruption, meaning the goal would be out of reach without significant efforts/adaptation and may not be attainable. The results from each work group meeting were then developed into a series of consequence/probability matrices. For each GBP priority/goal, the probabilities and consequences for each stressor/risk are illustrated according to all the possible combinations (high-medium-low) for the categories.

Figure 2 illustrates the risk identification and analysis process described above to create the qualification of high, medium or low for each consequence and probability. There are five components required to create the consequence/probability matrix (blue), with specific examples listed below (Example A: red and Example B: yellow). Hexagons provide further explanation of how consequences and probabilities were determined in the red example.

Figure 2 Flow Diagram of two examples from Goal to Consequence/Probability Development

A series of draft consequence/probability matrices for the risks identified during the second work group meeting were prepared and presented to the work group in a final work group meeting for the work group to review and provide input

on the draft consequence/probability matrices. The resulting series of consequence/probability matrices were developed over 18 months through three expert stakeholder work group meetings and targeted one-on-one stakeholder follow-up discussions. Through the development of the stressors, risks, consequences, probabilities, and the final matrices, versions and rough drafts were sent out to the GBEP subcommittee heads (the chair and vice-chair of the Water and Sediment Quality, the Monitoring and Research, the Natural Resource Uses and the Public Participation and Education subcommittees) for input, edits, and comments. The following ideas and thoughts on stressors, risks, and management strategies that went into the Galveston Bay Estuary Resilience Assessment were generated by stakeholders in the expert work group to reflect the most likely impacts to Galveston Bay based on their years of research and experience working in the region. Figure 3 details the steps taken by the work group during the development of the Galveston Bay Estuary Resilience Assessment.

	Communication &	Informing key people about Galveston Bay Estuary Resilience Assessment & asking for input
	Consultation	Identified work group, reaching out through GBEP subcommittees
	Establishing the	Identifying organizational goals that are susceptible to estuary stressors
Steps to Developing	Context	First work group meeting
Estuary Resilience	Risk Identification	Brainstorming about how estuary stressors will interact with organizational goals
Assessment		First work group meeting
	Risk Analysis	Developing an initial characterization of consequence and probability for each risk
		Second work group meeting
	Risk Evaluation	Using a consequence/probability matrix to build consensus about each risk
		Third work group meeting

Figure 3 Outline of Steps undertaken by the work group

In order to develop the Galveston Bay Estuary Resilience Assessment, stakeholders in the expert work group progressed through the steps above for 15 GBP goals and 11 estuary stressors suggested by the work group as the most likely to impact Galveston Bay (Table 2 and Figure 1). The creation of the consequence/probability matrix required five components as outlined in Figure 3: Use of **priorities/goals** from each of the GBP priorities (Table 2).

- 1. Identification of estuary **stressors** that Galveston Bay will be facing now and in the future (identified by the work group stakeholders) (Figure 2).
- 2. **Identification of the risks** associated with how the stressors might impact the ability of GBEP to meet each goal.
- 3. Assign a high, medium, or low **consequence (or impact)** of each risk on each goal.
- 4. Assign a high, medium, or low **probability (or likelihood)** of the stressors affecting the ability of GBEP to meet the goals.
- 5. Arrange the impacts of the stressors on the ability to meet the goals in a **matrix** organized by consequence and probability.

The results of the risk evaluation are the **Consequence/Probability Matrices by GBP Priority/Goal** (Figure 4). For each matrix category, the stressors are listed first, with the risk in bold. As an example, for the GBP Goal of Engage Communities, the work group identified a stressor of Land Use Change. One of the risks the work group identified for the stressor of Land Use Change was Increased Impervious Surfaces. The work group evaluated the probability of Increased Impervious Surfaces as High, and the consequence of Increased Impervious Surfaces to meeting the GBP Goal of Engage Communities as Medium. Some stressors had the same risk associated with them. For example, in Figure 4, for all stressors associated with Nuisance Flooding, Increasing Extreme Event Flooding, and Relative Sea Level Rise, the work group had identified the same risk of Increased flooding of property and habitat. Appendix B contains an assortment of Consequence/Probability Matrices sorted by: Stressor; and by consequence/probability overall, with all stressors and priorities combined.

Visualizing which risks are shared across goals, or which risks are considered both high consequence and high probability, or which risks might be most severe for a particular goal allows for targeted resource planning. For example, Figure 5 shows all risks grouped by High Consequence and High Probability. The ability to visualize the risks across all categories and goals that are considered both high for consequence and probability can help with adaptation planning decisions. The matrices could be used as part of risk evaluation (assessing risks to determine which ones an organization will move forward with in the action planning process), finding and selecting adaptation actions and, possibly, developing a risk-based adaptation action plan.

The consequence/probability matrix is a tool for visualizing how estuary stressors and their risks are categorized by experts in the field. These matrices allow GBEP and its subcommittees to evaluate priorities, concerns, and issues

concerning estuary resilience planning. Since risks, consequences, and probabilities have been developed according to GBP priority/goal, the GBEP can use the Galveston Bay Estuary Resilience Assessment as a guide for planning for coastal resilience that align with the GBP goals.

Figure 4: Series of Consequence/Probability Matrices for Estuary Resilience evaluated by GBP Goal

GBP Goal: Engage Communities

GBP Goal: Ensure Safe and Aquatic Human Use: Increase public awareness of current public health risks/Reduce risk through WBPs

ability of Occurrence)	High		 Increasing Drought Pollutant concentrations increase Warmer Waters Increased bacterial growth and bacterial load exceedances Warmer Winters Mosquito populations will not fall dormant with extended summers Warmer Winters Increased exceedances of bacteriological standards Warmer Winters Criteria for discharging may not be met 	 Increasing Extreme Event Flooding Increasing Inland Flooding Bacteria in flood waters Increasing Extreme Event Flooding Increasing Inland Flooding Exposure to pollutants during flood events Increasing Drought Increase need for water conservation and restrictions Relative Sea Level Rise Greater coastal wetland losses could occur Warmer Summers Increased exceedances of bacteriological standards Warmer Waters Increase in vibrio illness
hood (Pro	Medium			1. Warmer Summers Increased heat stress (education)
Likeli	Low		 Land Use Change Increased runoff Warmer Waters Water temperatures may increase toxicity of pollutants 	
		Low	Medium	High
			Consequence	

GBP Priority/Goal: Ensure Safe and Aquatic Human Use: Reduce NPS and PS (including WWTF and sanitary sewer system) pollution

	Low	Medium	High
Likelih Low	 Increasing Drought Older "leaking systems" have less pollution due to decreased rainfall Warmer Summers Increased evapotranspiration 	 Warmer Waters Increased bacterial growth, Increasing bacteria load exceedances Warmer Winters Eliminates freeze events Warmer Winters Lead to warmer water, increased likelihood of fecal indicator bacteria and water quality exceedances 	
Medium	 Ocean Acidification Lead to decreased pH 	 Land Use Change Increase in impervious surfaces leads to increased runoff Increasing Drought Increasing bacteria load Population Increase Increased quantity and decreased quality of stormwater 	1. Relative Sea Level Rise Potential increase of saltwater intrusion
vability of Occurrence) High	 Increasing Extreme Event Flooding WWTF will go offli more often Increasing Extreme Event Flooding Frequency of sanit sewers infiltration events wi increase Increasing Inland Flooding Increased runoff from event will lead to pollutant load increase Increasing Inland Flooding Potential for increased overtopping and "leaking systems" releasing greater pollutants 	 Warmer Summers Warmer Winters More water for irrigation leading to increased runoff Warmer Summers Lead to warmer water, increased likelihood of fecal indicator bacteria and water quality exceedances 	 Nuisance Flooding Septic systems and WWTF and lift stations could fail Increasing Extreme Event Flooding New sources of pollution Increasing Drought Increased water usage Increasing Inland Flooding Could increase erosion of streambeds Population Increase Increased population leads to increase in sources of NPS pollutants Relative Sea Level Rise High water tables will drown coastal septic systems causing them to fail Relative Sea Level Rise Contaminated sites may flood Relative Sea Level Rise Greater coastal wetland losses

bility of Occurrence)	High	1. Warmer Winters Potential for prolonged time period of bacterial/pathogen presence	 Nuisance Flooding Unknowns: do chronic higher tides impact restored wetlands Increasing Extreme Event Flooding Reduction of positive impacts of freshwater inflow Increasing Drought Less freshwater inflow Increasing Drought Prolonged reduced freshwater has long term effects Increasing Drought Increased salinity in brackish habitats Increasing Drought Increased chances of red and brown tides Increasing Inland Flooding Changes in inflow regime Population Increase Increased demand places more pressure on available freshwater supply Relative Sea Level Rise Reduction of positive impacts of freshwater inflow Relative Sea Level Rise Increase in bacteria levels from failing septic systems Warmer Summers Warmer Winters Increased bacteria levels Warmer Winters More & stronger tropical storms/hurricanes Warmer Winters Increase in invasive species in Galveston Bay Warmer Winters Potential for prolonged hurricane season 	 Land Use Change Increase in impervious surfaces leads to increase of freshwater Increasing Extreme Event Flooding Potential for increased spills/contaminants entering the bay system Warmer Summers Warmer Winters Increased evapotranspiration – less freshwater inflow Warmer Summers Potential for more & stronger tropical storms/hurricanes
Likelihood (Proba	w	 Land Use Change Unknowns: how conversion of agricultural land impacts the Bay? Increasing Drought Unknowns: does drought change habitat functionality? Relative Sea Level Rise Salinizes brackish area Warmer Waters Impact dynamics of salinity stratification Warmer Waters Reduction in nutrient loading/productivity of estuary Population Increase More people to educate and promote water conservation Population Increase NPS pollution 	 Relative Sea Level Rise Increased extent of marine water may impact the freshwater balance of the bay Warmer Summers Essential food sources may die off Warmer Summers Unknowns: do warmer summers impact oyster reefs Warmer Waters Changes in communities to more tropical composition Warmer Winters Increased evapotranspiration Warmer Waters More users on the water for prolonged time 	 Warmer Summers Heat stress to native populations Warmer Summers Changes in communities to more tropical composition Increasing Extreme Event Flooding Unknowns: how do storms impact freshwater wetlands? Warmer Waters Unknowns: How does warmer water impact phytoplankton community composition? Warmer Winters Changes in communities
	ě	increase	(extent of the year)	to more tropical composition
		Low	Medium	High
Consequence			Consequence	

GBP Goal: Inform Science - Based Decision Making

GBP Goal: Protect and Sustain Living Resources: Conserve, restore and enhance vital habitats in the lower portion of the Galveston Bay watershed

urrence)	High	 Increasing Drought Changes to sediment loads Increasing Drought Loss of seasonal wetlands Increasing Inland Flooding Low light due to increased sediment load Warmer Summers Increased evapotranspiration which could lead to aquatic/subtidal species composition change Warmer Summers Warmer Winters Increase plant productivity, vertical accretion and carbon sequestration Warmer Watters Increased water temperatures could cause changes in phytoplankton community composition 	 Nuisance Flooding Loss of outer marsh habitat Nuisance Flooding Habitat loss, conversion, and migration impact native species Nuisance Flooding May create unfavorable habitat conditions more frequently Increasing Extreme Event Flooding Increasing Inland Flooding Movement of invasive species Increasing Drought Loss of tree and vegetative cover Increasing Extreme Event Flooding Recreational fishing pressure Relative Sea Level Rise Changing spatial extent of available habitat Warmer Waters Increase in oyster predation and parasites 	 Increasing Extreme Event Flooding Increasing Inland Flooding Increased stream erosion and sediment loads Increasing Extreme Event Flooding Increasing Drought Loss of habitat Increasing Drought Increased evapotranspiration Population Increase Loss of native habitat to development Relative Sea Level Rise Increased extent of saline waters Relative Sea Level Rise Increased extent of saline waters Relative Sea Level Rise Changing light attenuation Warmer Summers Could expand range of invasive species Warmer Waters Increased stratification Warmer Waters Increased stratification Warmer Waters Uncreased stratification 	
Likelihood (Probability of Oc	Medium		 Increasing Extreme Event Flooding Increase in frequency and intensity of high salinity events Increasing Drought Area of suitable habitat decreases Increasing Inland Flooding Loss of habitat Increasing Inland Flooding Increase in frequency, intensity of decreased salinity events Increasing Inland Flooding Impacts for riparian fish spawning Population Increase Impacts for mincreased human pollution Relative Sea Level Rise Habitat conversion to open water Increasing Inland Flooding Correlation with drop in salinity and increase in lesions on bottlenose dolphins Increasing Inland Flooding Correlation with drop in salinity and impact on sea turtles 	 Land Use Change Increase in impervious surfaces leads to increased runoff Land Use Change Coastal barriers reduce tidal exchange Land Use Change Loss of native habitat due to development Relative Sea Level Rise Increased marsh flooding 	
	Low	 Increasing Extreme Event Flooding Changes to nutrient supply Increasing Drought Availability of water for restoration and enhancement Warmer Waters Defining habitat characteristics like pH impacted by water temp Warmer Winters Increased growing season could cause plant stress if they require dormant period 	 Increasing Inland Flooding Changes to nutrient supply 	 Land Use Change Population Increase Increase nutrient input and turbidity Nuisance Flooding Increase marsh habitat range further upslope Ocean Acidification Potential impacts on shellfish and other sedentary organisms 	
		Low	Medium	High	
		Consequence			

GBP Goal: Protect and Sustain Living Resources: Ensure adequate quantities of freshwater reach Galveston Bay

Image: Special system of the system of th
Image: Second Structure For Summers Increased evaportanspiration will decrease freshwater inflows 1. Increasing Extreme Event Flooding Changes periodicity of freshwater inflows 1. Land Use Change Reservoir operations can shift the timing and amount of peak inflows 2. Relative Sea Level Rise Loss of wetlands could impact quality of freshwater inflows 1. Land Use Change Reservoir operations can shift the timing and amount of peak inflows 3. Relative Sea Level Rise Loss of wetlands could impact quality of freshwater inflows 3. Relative Sea Level Rise Less availability of groundwater = more demand on surface water, decreased base fill increase salinity in upstream reaches 3. Relative Sea Level Rise Loss availability of groundwater = ware full algal blooms are more likely to develop in warm, salty water 4. Uarmer Summers Harmful algal blooms are more likely to develop in warm, salty water 5. Warmer Vaters Varmer Valters Marmer Valters Increased evapotranspiration will decrease freshwater inflows 4. Increasing Extreme Event Flooding Increasing Inland Flooding Changes seasonality of freshwater inflows 1. Increase freshwater inflows
Image: Second Control of
4. Warmer Summers Increased evapotranspiration wildecrease freshwater inflows
periodicity of freshwater inflows 2. Increasing Drought Base flow in streams may decrea 3. Increasing Drought Base flow in streams may decrea 3. Increasing Drought Increase in demand on arrow durates a further reduction of here flow

GBP Goal: Protect and Sustain Living Resources: Sustain and restore native species populations

rence)	High	1. Warmer Winters Proliferation of mangroves in Galveston Bay is likely if deep freezes occur less often	1. Increasing Drought Sessile organism stress	 Increasing Inland Flooding Changes in shallow water habitat and secondary impacts of juvenile stages of estuarine and marine organisms Relative Sea Level Rise Increased marsh flooding Relative Sea Level Rise Changing spatial extent of available habitat Relative Sea Level Rise Loss of restored and enhanced habitat due to drowning Warmer Winters Could alter habitat distribution and lower dissolved oxygen in some area
ood (Probability of Occurre	Medium	1. Warmer Winters Potentially more suitable for manatees and less cold stunning events for sea turtles	 Increasing Extreme Event Flooding Increasing Inland Flooding Habitat loss, conversion, and migration hold implications for native species Relative Sea Level Rise Increased extent of saline waters Warmer Summers Heat stress to native populations Warmer Summers Warmer Winters Increased salinity can impact distribution, abundance, and productivity of native species Warmer Summers Life cycle stages is influenced by environmental cues Warmer Waters Shifts in fisheries populations Warmer Waters Warmer Winters Oyster reef loss to dermo and oyster drilling predators Warmer Waters Correlation with drop in salinity and increase in lesions on bottlenose dolphins Warmer Winters Could expand range of invasive species 	 Increasing Extreme Event Flooding Changes in shallow water habitat and secondary impacts on juvenile estuarine and marine organisms Increasing Drought Species may not tolerate new drought regimes Increasing Drought Increasing marine and invasive species including predators, parasites, and diseases Increasing Drought Increased conditions for harmful algal blooms Relative Sea Level Rise Changing light attenuation Warmer Summers Increased water temperatures would increase oyster predation and parasites Warmer Summers Warmer water temperatures have been linked to long-term decline in blue crab abundance Warmer Winters Potential increase in pests
Likeli	Low		 Increasing Extreme Event Flooding Increasing Drought Increasing Inland Flooding Potential adverse effect for secretive marsh birds like rails if drier transition habitats are not available Increasing Drought Increase in stranding events and inundation of freshwater habitats Increasing Drought Shifting vegetation community composition Warmer Winters Potential to increase return intervals for wildfires affect vegetation structure and use by threatened or endangered species 	
		Low	Medium	High
			Consequence	

Figure 5 Overall High Consequence and High Probability Risks

Appendix A: Galveston Bay Plan - *Plan Priorities and Action Plans (Figures from the Galveston Bay Plan, 2nd edition, <u>https://gbep.texas.gov/galveston-bay-plan/</u>)*

GBP Figure 12. Nonpoint Source Action Plan

Page 21 of 51

GBP Figure 15. Point Source Action Plan

GBP Figure 17. Public Health Awareness Action Plan

GBP Figure 21. Habitat Conservation Action Plan

Page 24 of 51

GBP Figure 23. Species Conservation Action Plan

GBP Figure 25. Freshwater Inflows Action Plan

GBP Figure 27. Stakeholder and Partner Outreach Action Plan

GBP Figure 29. Public Education and Awareness Action Plan

GBP Figure 31. Applied Research and Monitoring Action Plan

GBP Figure 33. Increase Access Action Plan

Appendix B: Consequence / Probability Matrix organized by Stressor and by Consequence / Probability for All Categories and Stressors

These are the IDs for the GBEP Plan Goals and Stressor used in the O	Stressor	Stressor ID	
GBP Priority	GBP Goal ID	Changes to land use and the built environment (infrastructure)	LU
Engage Communities	ECG	Chronic higher tides/nuisance flooding	NF
Ensure Safe and Aquatic Human Use: Increase public awareness of current public health risks/Reduce risk through WBPs	SAGWBP	Increase in extreme events (coastal	EE
Ensure Safe and Aquatic Human Use: Reduce NPS and PS (including WWTF and sanitary sewer system) pollution	SAGWNPS	flooding/storm surge) Increasing Drought	ID
Inform Science -Based Decision Making	ISG	Increasing Inland Flooding (largely rain-	IF
Protect and Sustain Living Resources: Conserve, restore, and enhance vital habitats in the lower portion of the Galveston Bay watershed.	PSGCRE	based) Ocean Acidification	OA
		Population Increase	PI
Protect and Sustain Living Resources: Ensure adequate quantities	PSGFI	Sea Level Rise + subsidence	SL
Protect and Sustain Living Resources: Sustain and restore native		Warmer Summers	WS
species populations	PSGNS	Warmer Winters	WW

Consequence / Probability Matrix by Stressor

Consequence / Probability Matrix by GB Plan Goal. See PowerPoint document for full accessible version. HARC (Ed.) 2022. Galveston Bay Estuary Resilience Assessment Report, Appendix C: Accessible Version of Consequence/Probability Matrices for Estuary Resilience. Texas Commission on Environmental Quality, Houston, Texas.

Stressor: Warmer Summers

celihood (Probability of Occurrence)	Hgh	 PSGCRE Increased evapotranspiration which could lead to aquatic/subtidal species composition change PSGCRE Warmer summers will increase plant productivity, vertical accretion, and carbon sequestration. This should accelerate as mangroves become more predominant. 	 ECG Heat stress ECG Increase in vibrio illnesses SAGWNPS Using more water for irrigation leading to increased runoff SAGWNPS Warmer summers will lead to warmer water, increased likelihood of fecal indicator bacteria, and increased frequency of water quality exceedances ISG Warmer waters lead to increased bacteria 	 ECG Warmer waters = increased bacteria SAGWBP Increased exceedances of bacteriological standards ISG Increased evapotranspiration - less freshwater inflow, compromised water quality ISG Potential for more & stronger tropical storms/hurricanes PSGCRE Warmer summers could expand range of invasive species. PSGFI Increased evapotranspiration will decrease freshwater inflows
	Medium		 ISG Essential food sources may die off ISG How warmer summers impact oyster reefs PSGFI Increased evapotranspiration will increase salinity in upstream reaches PSGNS Heat stress to native populations and metabolic costs/mortality; changes to food webs PSGNS Increased salinity (from increased evaporation and decreased freshwater inflow) can impact the distribution, abundance, and productivity of native species PSGNS Life cycle stages (e.g., spawning) is influenced by environmental cues (temperature) PSGNS Shifts in fisheries populations, likely continued decreases in flounder but potential increases in range for snook and pompano 	 SAGWBP Increased heat stress (education) ISG Heat stress to native populations ISG Changes in communities to more tropical composition PSGFI Harmful algal blooms are more likely to develop in warm, salty water. PSGNS Increased water temperatures would increase oyster predation and parasites PSGNS Warmer water temperatures have been linked to long-term decline in blue crab abundance and negative effects on white shrimp
	Low	1. SAGWNPS Increased evapotranspiration – compromised integrity of water bodies		
		Low	Medium	High
Consequence		Consequence		

Stre	Stressor: Warmer Winters				
:currence)	High	 ISG Potential for prolonged time period of bacterial/pathogen presence PSGCRE Increase plant productivity, vertical accretion, and carbon sequestration. This should accelerate as mangroves become more prominent PSGNS Proliferation of mangroves in Galveston Bay is likely if deep freezes occur less often 	 SAGWBP Mosquito populations will not fall dormant as long with extended summers SAGWBP Increased exceedances of bacteriological standards. SAGWBP Criteria for discharging may not be met SAGWNPS Extended growing season leading to increased irrigation and runoff ISG Potential for prolonged hurricane season 	 PSGCRE Warm winters will enhance survival of insect pests. ISG Warmer winters impact on invasive species in Galveston Bay (loss of freeze) 	
od (Probability of Oc	Medium	1. PSGNS Potentially more suitable for manatees and less cold stunning events for sea turtles	 ECG Increase in invasive species ISG Increased evapotranspiration - less freshwater inflow, less water availability PSGFI Increased evapotranspiration will increase salinity in upstream reaches PSGNS Warmer winters could expand range of invasive species; more temperate native species will move north PSGNS Increased salinity (from increased evaporation and decreased freshwater inflow) can impact the distribution, abundance, and productivity of native species PSGNS Oyster reef loss to dermo and drilling predators 	 PSGFI Increased evapotranspiration will decrease freshwater inflows PSGNS Potential increase in pests affecting crops and native habitats and wildlife 	
Likelihoo	Low	1. PSGCRE Increased growing season could cause plant stress if they require a dormant period.	 SAGWNPS Eliminates freeze events that would normally prohibit long-term establishment of invasive species. SAGWNPS Warmer winters will lead to warmer water, increased likelihood of fecal indicator bacteria, and increased frequency of water quality exceedances. PSGNS Potential to increase return intervals for wildfires affecting vegetation structure and use by threatened or endangered species 	1. ISG Changes in communities to more tropical composition	
		Low	Medium	High	
Consequence					

Stre	Stressor: Warmer Waters				
ty of Occurrence)	High	1. PSGCRE Increased water temperatures could cause changes in phytoplankton community composition	 ECG Increase in vibrio illnesses SAGWBP Increased bacterial growth, increasing bacteria load exceedances. ISG Warmer waters lead to increased bacteria & potentially other pathogens PSGCRE Increase in oyster predation and parasites 	 ECG Heat Stress ECG Warmer waters lead to increased bacteria SAGWBP Increase in vibrio illnesses (increased communication on public health risks) ISG Increased evapotranspiration - less freshwater inflow; compromised water quality PSGCRE Decrease in dissolved oxygen PSGCRE Increased stratification PSGNS Warmer water could alter habitat distribution and lower dissolved oxygen in some area ISG Potential for more & stronger tropical storms/hurricanes 	
ood (Probabili	Medium	 ISG Warmer water may affect the dynamics of salinity stratification (and possibly circulation?) within the estuary (warmer water expands) ISG Reduction in nutrient loading and productivity of estuary 	 ISG Changes in communities to more tropical composition PSGFI Increased evapotranspiration will increase salinity in upstream reaches PSGNS Oyster reef loss to dermo and oyster drilling predators PSGNS Correlation with drop in salinity and increase in lesions on bottlenose dolphins 	 ISG Unknowns: how does warmer water impact phytoplankton community composition? PSGFI Increased evapotranspiration will decrease freshwater inflows 	
Likelih	Low	1. PSGCRE Defining habitat characteristics like pH may be affected by water temperature	 SAGWBP Warmer temperatures may increase toxicity of pollutants due to increased metabolism rates SAGWNPS Increased bacterial growth, increasing bacteria load exceedances. ISG More users on the water for prolonged time (extent of the year) increasing exposure to contaminants/potential minor spills through accidents of small boats 		
		Low	Medium	High	
Consequence					

Stre	esso	or: Increasing Drought		
າood (Probability of Occurrence)	High	 PSGCRE changes to sediment loads PSGCRE loss of seasonal wetlands 	 SAGWBP Pollutant concentrations increase (less dilution) SAGWNPS Pollutant concentrations increase SAGWNPS Increased soil shrinkage will cause pipes to shift and crack leading to greater inflow and infiltration (I&I). ISG Less inflow - decimation of upper bay assemblages - Rangia, Vallisneria and oysters due to increased parasitism ISG Prolonged reduced freshwater input has long-term effects ISG Increased salinity in brackish habitats + salinization of freshwater habitats> loss of submerged aquatic veg ISG Increased chances of red & brown tides PSGCRE loss of ephemeral species and ephemeral habitats PSGCRE Loss of tree and vegetative cover PSGNS Sessile organism stress 	 SAGWBP Increased Water conservation/ restrictions SAGWNPS Increased irrigation = increased runoff PSGCRE Increased evapotranspiration and/or decrease in freshwater inflows = increased salinity and decreases in oyster reef habitat PSGCRE loss of habitat for riparian spawning fish species PSGFI Increasing demand on water resources; decrease in discharge to Galveston Bay PSGFI Base flow in streams may decrease PSGFI Increase demand on groundwater = further reduction of base flow
	Medium	1. ISG Unknowns: does drought change habitat functionality?	 ECG Increase in tree loss SAGWNPS Increasing bacteria load (less dilution) PSGCRE Area of suitable habitat decreases and limited to upper portion of estuaries. 	 ECG Decrease in water quality - less for dilution PSGNS Species may not tolerate new drought regimes PSGNS Increasing marine and invasive species including predators, parasites, and diseases PSGNS Increased favorable conditions for harmful algal blooms
Likeli	Low	 SAGWNPS Older systems might have less pollution during a drought than a heavy rain event PSGCRE less water for restoration and enhancement 	 PSGNS Increase in stranding events (e.g. marine mammals) and inundation of freshwater habitats. PSGNS Adverse effect for secretive marsh birds like rails in salt marshes if transition habitats not available. PSGNS Shifting vegetation community composition 	
		Low	Medium	High
			Consequence	

ood (Probability of Occurrence)	High		1. ECG Increased impervious surfaces	1. IS Increase in impervious surfaces leads to increased runoff of freshwater, will lead to more flashy system. Changes to land use and infrastructure (e.g., increase in impervious cover, increase in reservoir storage, reservoir operations, etc.) alter the quantity, timing, and duration of inflows.
	Medium	1. ISG Unknowns: how does conversion of agricultural land impact Galveston Bay?	 SAGWNPS Increase in impervious surfaces leads to increased runoff and alters pollutant pathways and residence time 	 PSGCRE Increase in impervious surfaces leads to increased runoff and sediment loading instream and downstream estuary and covering of bottom plant communities PSGCRE Coastal barriers reduce tidal exchange and ultimately alter salinity and circulation patterns that influence habitats and the species inhabiting them PSGCRE Loss of native habitat due to development PSGCRE Reservoir operations can shift the timing and amount of peak inflows
Likelił	Low		 SAGWBP Increased runoff SAGWNPS Loss of agriculture lands could change types and seasonality of NPS pollution 	 PSGCRE Increased nutrient input and turbidity> decrease in seagrass and oysters
		Low	Medium	High
Consequence			ce	

Stressor: Changes to Land Use and The Built Environment (Infrastructure)

St	Stressor: Increasing Inland Flooding (largely rain-based)				
of Occurrence)	High		 SAGWNPS May cause more septic systems to fail - lead to long-term pollutant load increase ISG Changes in inflow regime which affects oyster and other species PSGCRE movement of invasive species (+/-) 	 SAGWBP Bacteria in flood waters SAGWBP Exposure to pollutants during flood SAGWNPS Could increase erosion of streambeds, increasing sedimentation and decreasing width of riparian corridors PSGCRE Increased stream erosion and sediment loads PSGNS Changes in shallow water habitat and secondary impacts on juvenile stages of estuarine and marine organisms ISG Correlation with increase in lesions on bottlenose dolphins 	
od (Probability o	Medium		 ISG Unknowns: Impacts on estuarine wetland ISG Unknowns: how are superfund sites impacted by increased flooding? PSGCRE loss of habitat PSGCRE increase in frequency and intensity of decreased salinity events PSGCRE impacts for riparian fish spawning PSGFI Changes periodicity of freshwater inflows PSGNS Habitat loss, conversion, and migration hold implications for native species 	1. SAGWNPS Contaminated sites may flood and discharge offsite	
Likelih	Low	 SAGWNPS Increased runoff: short-term pollutant load increase SAGWNPS Potential for increased overtopping and "leaking systems" releasing more pollutants PSGCRE low light due to increased sediment load 	 PSGCRE changes to nutrient supply PSGFI Changes seasonality of freshwater inflows PSGNS Potential adverse effect for secretive marsh birds like rails in salt marshes if transition habitats are not available 	1. ECG Wider spread of waterborne pathogens	
		Low	Medium	High	
	Consequence				

Stressor: Increase in extreme events (coastal flooding/storm surge)

Likelihood (Probability of Occurrence)	High	 SAGWNPS WWTF will go offline more often during intense events SAGWNPS Frequency of sanitary sewers infiltration events will increase (increased inundation of septic systems) 	 ISG Reduction of positive impacts of freshwater inflow PSGCRE movement of invasive species PSGFI Changes periodicity of freshwater inflows 	 ECG Increased flooding of property and habitat SAGWBP Bacteria in flood waters SAGWBP Exposure to pollutants during flood events SAGWNPS Increase in extent in tidal flooding could lead to new sources of pollution from floating tanks, runoff etc; ISG Potential for increased spills/contaminants entering the bay system PSGCRE Increased stream erosion and sediment loads PSGCRE loss of habitat
	Medium		 PSGCRE increase in frequency and intensity of high salinity events PSGNS Habitat loss, conversion, and migration hold implications for native species 	 ECG Stakeholders may not have funds & time to partner due to dealing with more events/damages, etc. ISG Unknowns: how do storms impact freshwater wetlands? PSGFI Accumulated impacts from other stressors (e.g., pollution) PSGNS Changes in shallow water habitat and secondary impacts on juvenile stages of estuarine and marine organisms
	Low	1. PSGCRE changes to nutrient supply	 PSGFI Changes seasonality of freshwater inflows PSGNS Potential adverse effect for secretive marsh birds like rails in salt marshes if transition habitats are not available 	
	Low		Medium	High
		Consequence		

Stre	Stressor: Sea Level Rise + Subsidence			
hood (Probability of Occurrence)	High		 ECG Wetland loss ISG Reduction of positive impacts of freshwater inflow due to increased intrusion of saltwater. ISG Increase in bacteria levels from failing septic systems? PSGCRE changing spatial extent of available habitat 	 ECG Increased flooding of property and habitat SAGWBP Greater coastal wetland losses could occur (less filtration) SAGWNPS Higher water tables/increase in extent in tidal flooding will drown coastal septic systems causing them to fail - lead to short-term and long-term pollutant load increases SAGWNPS Contaminated sites may flood or have shoreline erosion SAGWNPS Greater coastal wetland losses (less filtration) PSGCRE Increased extent of saline waters PSGCRE Changing light attenuation PSGNS Increased marsh flooding PSGNS changing spatial extent of available habitat PSGNS loss of restored and enhanced habitat due to drowning
	Medium	1. ISG Salinizes brackish areas> increases the demand for freshwater to maintain salinity regimes	 ISG Increased extent of marine water may impact the freshwater balance of the bay PSGCRE habitat conversion to open water PSGFI Loss of wetlands could impact quality of freshwater inflows PSGNS Increased extent of saline waters 	 ECG Increased storm surge SAGWNPS Potential increase of saltwater intrusion into wastewater pipelines, increasing water load and overwhelming water treatment capacity PSGCRE Increased marsh flooding PSGFI Less availability of groundwater (due to subsidence and saltwater intrusion) = more demand on surface water, decreased base flow PSGNS Changing light attenuation
Like	Low			
		Low	Medium	High
			Cons	equence

Stre	Stressor: Chronic higher tides/nuisance flooding				
of Occurrence)	High		 SAGWNPS Increase in extent in tidal flooding could lead to new sources of pollution ISG Unknowns: how do chronic higher tides impact restored wetlands PSGCRE Loss of outer marsh habitat; uncertainty of ability of wetland to migrate inland PSGCRE Habitat loss, conversion, and migration hold implications for native species PSGCRE May create unfavorable habitat conditions more frequently 	 ECG Increased flooding of property and habitat SAGWNPS Increase in extent in tidal flooding could cause more septic systems and WWTF and lift stations to fail - lead to long-term pollutant load increase 	
ood (Probability	Medium		1. ISG Reduction of positive impacts of freshwater inflow due to increased intrusion of saltwater.	1. SAGWNPS Potential increase of saltwater intrusion into wastewater pipelines, increasing water load and overwhelming water treatment capacity	
Likelih	Low		1. ISG Increased influx of marine water on a more frequent basis may impact the freshwater balance	1. PSGCRE Increase marsh habitat range further upslope	
		Low	Medium	High	
Consequence					

Г

Stre	tressor: Acidification				
urrence)	High			1. PSGCRE Unknowns: Oysters in the Bay impacted by acidification	
ability of Occı	Medium	1. SAGWNPS Ocean Acidification will lead to decreased pH which could impact mobilization of pollutants (e.g. metals)			
Likelihood (Proba	Low		 ISG Healthy freshwater flows needed to maintain pH balance in bays ISG Estuary acidification increases when riverine alkalinity export is reduced. Then reduced alkalinity export from the bays can decrease the buffer capacity of adjacent coastal ocean against future acidification. ISG Unknowns: does acidification in Galveston Bay impact oyster reefs? 	 ECG Loss of oyster reef habitat PSGCRE Potential impacts on shellfish and other sedentary organisms that require calcium for exoskeleton 	
		Low	Medium	High	
Consequence					

Stre	Stressor: Population Increase				
of Occurrence)	High		 ECG Increased resource demands SAGWNPS WWTF capacity may become an issue in already dense areas where expansion may be difficult. ISG Increased demand places more pressure on available supply. PSGCRE Increased recreational fishing pressure and trampling 	 SAGWNPS Increased population leads to increase in sources of NPS pollutants PSGCRE Loss of native habitat to development 	
l (Probability	Medium	1. ECG More people to educate and promote water conservation.	 SAGWNPS Increased quantity and decreased quality of stormwater from developed land VS undeveloped prairie or bottomland forest PSGCRE Impacts from possible increased human-caused pollution* 		
Likelihooo	Low			 PSGCRE Increased nutrient input and turbidity> decrease in seagrass and oysters 	
		Low	Medium	High	
Consequence					

Г

22. PSIPSGCRETEETTET Increased stream erosion and sediment loads

Consequence / Probability Matrix by All Categories and Stressors

& ST

All Risks Grouped: High Consequence, High Likelihood	23. PS PSGCRE EE Loss of habitat
	24. PS PSGCRE OA Unknown: Oysters in the Bay impacted by
1. EC ECG NF EE SL Increased flooding of property and habitat	acidification
2. EC ECG WS WH Warmer waters lead to increased bacteria	25. PS PSGCRE ID Increased evapotranspiration and/or decrease in
3. EC ECG WH Heat Stress	freshwater inflows - increased salinity, decreases in oyster reef
4. SA SAGWBP EE IF Bacteria in flood waters	26. PS PSGCRE ID Loss of habitat for riparian spawning fish
5. SA SAGWBP EE IF Exposure to pollutants during flood events	27. PS PSGCRE PI Loss of native habitat to development
6. SA SAGWBP ID Increase need for water conservation and water restrictions	28. PS PSGCRE SL Increased extent of saline waters
7. SA SAGWBP SL Greater coastal wetland losses could occur (less filtration)	29. PS PSGCRE SL Changing light attenuation
8. SA SAGWBP WS Increased exceedances of bacteriological standards	30. PS PSGCRE WS Warmer summers could expand range of invasive
9. SA SAGWBP WH Increase in vibrio illnesses	species.
10. SA SAGWNPS NF Increase in extent in tidal flooding could cause more waste	31. PS PSGCRE WH Decrease in DO
water infrastructure to fail	32. PS PSGCRE WH Increased stratification
11. SA SAGWNPS EE Increase in extent in tidal flooding could lead to new sources of	33. PS PSGCRE WW Warm winters enhance survival of insect pests.
pollution from floating tanks, runoff etc;	34. PS PSGCRE OA Unknown impacts regarding oysters and bay
12. SA SAGWNPS ID Increased human use of water for irrigation leading to increased	35. PS PSGFI ID Increasing demand on water resources; decrease in
runoff	discharge to Galveston Bay
13. SA SAGWNPS IF Increase erosion of streambeds, increasing sedimentation	36. PS PSGFI ID Base flow in streams may decrease
reducing vegetated land available for filtration	37. PS PSGFI ID Increase demand on groundwater = further
14. SA SAGWNPS PI Increased population leads to increase in sources of NPS	reduction of base flow
pollutants	38. PS PSGFI WS Increased evapotranspiration will decrease
15. SA SAGWNPS SL Higher water tables/increase in extent in tidal flooding will	freshwater inflows
drown coastal septic systems causing them to fail	39. PS PSGNS IF Changes in shallow water habitat and secondary
16. SA SAGWNPS SL Contaminated sites may flood or have shoreline erosion	impacts on juvenile stages of estuarine and marine organisms
17. SA SAGWNPS SL Greater coastal wetland losses (less filtration)	40. PS PSGNS SL Increased marsh flooding
18. IS ISG LU Changes to land use and infrastructure alter the quantity, timing, and	41. PS PSGNS SL changing spatial extent of available habitat
duration of inflows.	42. PS PSGNS SL Loss of restored and enhanced habitat due to
19. IS ISG EE Potential for increased spills/contaminants entering the bay	drowning
20. IS ISG WS Increased evapotranspiration - less inflow, compromised water quality	43. PS PSGNS WH Warmer water could alter habitat distribution and

All Risks Grouped: High Consequence. Medium Likelihood				
 All Risks Grouped: High Consequence, Medium Likelihood EC ECG EE Stakeholders may not have funds & time to partner due to dealing with more events/damages, etc. EC ECG ID Decrease in water quality - less water for dilution EC ECG SL Increased storm surge SA SAGWNPS NF PL Potential increase of saltwater intrusion into wastewater pipelines, increasing water load and overwhelming water treatment capacity SA SAGWNPS IF Contaminated sites may flood and discharge offsite IS ISG EE Unknowns: how do storms impact freshwater wetlands? IS ISG WS Changes in communities to more tropical composition IS ISG WH Unknowns: how does warmer water impact phytoplankton community composition? IS ISG WW Increased evapotranspiration - less freshwater inflow, less water availability PS PSGCRE LU Increase in impervious surfaces leads to increased runoff and sediment loading instream and downstream estuary and covering of bottom plant communities PS PSGCRE LU Coastal barriers reduce tidal exchange and ultimately alter salinity and circulation patterns that influence habitats and the species inhabiting them PSIPSGCRE LU Loss of native habitat due to development 	 PS PSGFI EE Accumulated impacts from other stressors (e.g., pollution) PS PSGFI SL Less availability of groundwater (due to subsidence and saltwater intrusion) = more demand on surface water, decreased base flow PS PSGFI WS Harmful algal blooms are more likely to develop in warm, salty water. PS PSGFI WH WW Increased evapotranspiration will decrease freshwater inflows PS PSGNS EE Changes in shallow water habitat and secondary impacts on juvenile stages of estuarine and marine organisms PS PSGNS ID Species may not tolerate new drought regimes PS PSGNS ID Increased favorable conditions for harmful algal blooms PS PSGNS SL Changing light attenuation PS PSGNS SL Changing light attenuation PS PSGNS WS Increased water temperatures would increase oyster predation and parasites PS PSGNS WS Warmer water temperatures have been linked to long-term decline in blue crab abundance and negative effects on white shrimp PS PSGNS WW Potential increase in pests affecting crops and 			
12. PS/PSGCRE/LU/Loss of native habitat due to development	20. PS[PS0NS] WW [Potential increase in pests affecting crops and			
13 PSIPSGCREISLIncreased marsh flooding	native habitats and wildlife			
14 DSIDSGELLULI Reservoir operations can shift the timing and	27. SA SAGWBP WS Increased heat stress (education)			
14. FSFSGFILD Reservoir operations can shift the timing and	28. IS ISG WS Heat stress to native populations			
amount of peak inflows				

All Risks Grouped: High Consequence, Low Likelihood

- 1. EC|ECG|IF|Wider spread of waterborne pathogens
- 2. EC|ECG|OA|Loss of oyster reef habitat
- 3. IS|ISG|WW|Changes in communities to more tropical composition
- 4. PS|PSGCRE|LU|PI| Increased nutrient input and turbidity --> decrease in seagrass and oysters
- 5. PS|PSGCRE|NF|increase marsh habitat range further upslope
- 6. PS|PSGCRE|OA|**Potential impacts on shellfish and other** sedentary organisms that require calcium for exoskeleton
- 7. PS|PSGCRE|PI|Increased nutrient input and turbidity --> decrease in seagrass and oysters

All Risks Grouped: Medium Consequence, High Likelihood		21.	21. IS ISG ID Prolonged reduced freshwater input has long-term effects	
1.	IS/ISG/WH/Increased evapotranspiration - less freshwater inflow:		and impacts the time it takes for the inflow regime to return to	
	compromised water quality		"normal" conditions	
2.	ECIECGILUIIncreased impervious surfaces	22.	IS ISGID Increased salinity in brackish habitats and freshwater habitats	
3.	ECIECGIPIIIncreased resource demands		> loss of submerged aquatic vegetation	
4.	ECIECGISLIWetland loss	23.	IS/ISG/ID/Increased chances of red & brown tides	
5.	FCIFCGIWSIHeat stress	24.	IS ISG IF Changes in inflow regime which affects oyster and other	
6.	FCIFCGIWSIWHI Increase in vibrio illnesses		species	
7.	SAISAGWBPISAGWNPSI ID Pollutant concentrations increase (less dilution)	25.	IS ISG PI Increased demand places more pressure on available supply.	
8.	SAISAGWBPIWHIWWIIncreased bacterial growth, increasing bacteria load	26.	IS/ISG/SL/Reduction of positive impacts of freshwater inflow due to	
0.	exceedances.		increased intrusion of saltwater.	
9	SAISAGWBPIWWIMosquito populations will not fall dormant as long with	27.	IS ISG SL Increase in bacteria levels from failing septic systems	
5.	extended summers	28.	IS ISG WS WH Warmer waters lead to increased bacteria	
10	SAISAGWBPIWWICriteria for discharging may not be met	29.	IS/ISG/WH/WW/Potential for more & stronger tropical	
11	SAISAGWNPSINFUncrease in extent in tidal flooding could lead to new		storms/hurricanes	
	sources of pollution	30.	PS PSGCRE NF Loss of outer marsh habitat; uncertainty of ability of	
12	SAISAGWNPSIDIIncreased soil shrinkage will cause pipes to shift and crack		wetland to migrate inland	
	leading to greater 181.	31.	PS PSGCRE NF Habitat loss, conversion, and migration impacts native	
13	SAISAGWNPSIIEIMay cause more sentic systems to fail - lead to long-term		species	
	pollutant load increase	32.	PS PSGCRE NF May create unfavorable habitat conditions more	
14	SAISAGWNPSIPIIWWTE capacity may become an issue in already dense areas		frequently	
	where expansion may be difficult.	33.	PS PSGCRE EE IF Movement of invasive species	
15.	SAISAGWNPSIWSIUsing more water for irrigation leading to increased runoff	34.	PS PSGCRE ID loss of ephemeral species and ephemeral habitats	
16	SAISAGWNPSIWSIIncreased likelihood of fecal indicator bacteria, and	35.	PS PSGCRE ID Loss of tree and vegetative cover	
	increased frequency of water quality exceedances	36.	PS PSGCRE PI Increased recreational fishing pressure and trampling	
17	SAISAGWNPSIWWIExtended growing season = increased irrigation/runoff	37.	PS[PSGCRE]SL]changing spatial extent of available habitat	
18	ISIISGINFIUnknowns: how do chronic higher tides impact restored wetlands	38.	PS[PSGCRE]WH[Increase in oyster predation and parasites	
19	ISIISGIEE Reduction of positive impacts of freshwater inflow	39.	PS[PSGFI]EE[Changes periodicity of freshwater inflows	
20	IS/ISG/ID/Less freshwater inflow - decimation of upper bay assemblages -	40.	PS[PSGNS]ID[Sessile organism stress	
	Rangia, Vallisneria and also bay wide oysters due to increased parasitism	41.	IS ISG WW Warmer Winters Increase Invasive species in Galveston Bay	

All Risks Grouped: Medium Consequence, Medium Likelihood

- 1. EC|ECG|ID|Increase in tree loss
- 2. EC|ECG|WW|Increase in invasive species
- 3. SA|SAGWNPS|LU|Increase in impervious surfaces leads to increased runoff and alters pollutant pathways and residence time
- 4. SA|SAGWNPS|ID|Increasing bacteria load (less dilution)
- 5. SA|SAGWNPS|PI|Increased quantity and decreased quality of stormwater from developed land VS undeveloped prairie or bottomland forest
- 6. IS | ISG | NF | Reduction of positive impacts of freshwater inflow due to increased intrusion of saltwater.
- 7. IS ISG IF Unknowns: Impacts on estuarine wetland habitat
- 8. IS|ISG|IF|Unknowns: how are superfund sites impacted by increased flooding?
- 9. IS|ISG|SL|Increased extent of marine water may impact the freshwater balance of the bay
- 10. IS | ISG | WS | Essential food sources may die off food web impacts
- 11. IS | ISG | WS | Unknowns: do warmer summers impact oyster reefs?
- 12. IS|ISG|WH|Changes in communities to more tropical composition
- 13. PS|PSGCRE|EE|Increase in frequency and intensity of high salinity events
- 14. PS|PSGCRE|ID|Area of suitable habitat decreases and limited to upper portion of estuaries
- 15. PS|PSGCRE|IF|Loss of habitat

- 16. PS|PSGCRE|IF|Increase in frequency and intensity of decreased salinity events
- 17. PS|PSGCRE|IF|Impacts for riparian fish spawning
- 18. PS|PSGCRE|IF|Impacts for salinity and bottlenose dolphins
- 19. PS|PSGCRE|IF|Impacts for salinity and sea turtles
- 20. PS|PSGCRE|PI|Impacts from possible increased human-caused pollution
- 21. PS|PSGCRE|SL|habitat conversion to open water
- 22. PS|PSGFI|IF|Changes periodicity of freshwater inflows
- 23. PS|PSGFI|SL|Loss of wetlands could impact quality of freshwater inflows
- 24. PS|PSGFI|WS|WH|WW|Increased evapotranspiration will increase salinity in upstream reaches
- 25. PS|PSGNS|EE|IF|Habitat loss, conversion, and migration hold implications for native species
- 26. PS|PSGNS|SL|Increased extent of saline waters
- 27. PS|PSGNS|WS|Heat stress to native populations and metabolic costs/mortality; changes to food webs
- 28. PS|PSGNS|WS|WW|Increased salinity (from increased evaporation and decreased freshwater inflow) can impact the distribution, abundance, and productivity of native species
- 29. PS|PSGNS|WS|Life cycle stages (e.g., spawning) is influenced by environmental cues such as temperature
- 30. PS|PSGNS|WS|Shifts in fisheries populations, likely continued decreases in flounder but potential increases in range for snook and pompano
- 31. PS|PSGNS|WH|WW|Oyster reef loss to dermo and oyster drilling predators
- 32. PS|PSGNS|WH|Correlation with drop in salinity and increase in lesions on bottlenose dolphins
- 33. PS|PSGNS|WW|Warmer winters could expand range of invasive species; more temperate native species will move north

All Risks Grouped: Medium Consequence, Low Likelihood

- 1. SA|SAGWBP|LU|Increased runoff
- 2. SA|SAGWBP|WH|Warmer temperatures may increase toxicity of pollutants due to increased metabolism rates
- 3. SA|SAGWNPS|LU|Loss of agriculture lands could change types and seasonality of NPS pollution
- 4. SA|SAGWNPS|WH|Increased bacterial growth, increasing bacteria load exceedances
- 5. SA|SAGWNPS|WW|Eliminates freeze events that would normally prohibit long-term establishment of invasive species
- 6. SA|SAGWNPS|WW|Warmer winters will lead to warmer water, increased likelihood of fecal indicator bacteria, and increased frequency of water quality exceedances
- 7. IS | ISG | NF | Increased influx of marine water on a more frequent basis may impact the freshwater balance
- 8. IS | ISG | OA | Healthy freshwater flows needed to maintain pH balance in bays
- 9. IS|ISG|OA|Estuary acidification increases when riverine alkalinity export is reduced. Then reduced alkalinity export from the bays can decrease the buffer capacity of adjacent coastal ocean against future acidification
- 10. IS|ISG|OA|Unknowns: does acidification in Galveston Bay impact oyster reefs?
- 11. IS|ISG|WH|More users on the water for prolonged time (extent of the year) increasing exposure to contaminants/potential minor spills through accidents of small boats
- 12. PS|PSGCRE|IF|Changes to nutrient supply
- 13. PS|PSGFI|EE|IF Changes seasonality of freshwater inflows
- 14. PS|PSGNS|EE|IF|ID|Potential adverse effect for secretive marsh birds like rails in salt marshes if transition habitats are not available
- 15. PS | PSGNS | ID | Increase in stranding events (e.g. marine mammals) and inundation of freshwater habitats
- 16. PS|PSGNS|ID|Shifting vegetation community composition
- 17. PS | PSGNS | WW | Potential to increase return intervals for wildfires affecting vegetation structure and use by threatened or endangered species

All Risks Grouped: Low Consequence, High Likelihood

- 1. SA|SAGWNPS|EE|WWTF offline more often during intense events
- 2. SA|SAGWNPS|EE|Frequency of sanitary sewers infiltration events will increase
- 3. SA|SAGWNPS|IF|Increased runoff from events will lead to short-term pollutant load increase
- 4. SA|SAGWNPS|IF|Potential for increased overtopping and "leaking systems"
- 5. EC|ECG|PI|More people to educate and promote water conservation.
- 6. IS|ISG|WW|Potential for prolonged time period of bacterial/pathogen presence
- 7. PS|PSGCRE|ID|Changes to sediment loads
- 8. PS|PSGCRE|ID|Loss of seasonal wetlands
- 9. PS|PSGCRE|IF|Low light due to increased sediment load
- 10. PS|PSGCRE|WS|Increased evapotranspiration which could lead to aquatic/subtidal species composition change
- 11. PS|PSGCRE|WS|WW|Increased plant productivity, vertical accretion, and carbon sequestration.
- 12. PS|PSGCRE|WH|Increased water temperatures could cause changes in phytoplankton community composition
- 13. PS|PSGNS|WW|Proliferation of mangroves in Galveston Bay is likely if deep freezes occur less often

All Risks Grouped: Low Consequence, Medium Likelihood

- 1. SA|SAGWNPS|OA|Ocean Acidification will lead to decreased pH which could impact mobilization of pollutants (e.g. metals)
- 2. IS | ISG | LU | Unknowns: how does conversion of agricultural land impact Galveston Bay?
- 3. IS |ISG |ID | Unknowns: does drought change habitat functionality?
- 4. IS | ISG | SL | Salinizes brackish areas --> increases the demand for freshwater to maintain salinity regimes
- 5. IS|ISG|WH|Warmer water may affect the dynamics of salinity stratification (and possibly circulation?) within the estuary (warmer water expands)
- 6. IS|ISG|WH|Reduction in nutrient loading and productivity of estuary
- 7. PS|PSGNS|WW|Potentially more suitable for manatees and less cold stunning events for sea turtles

All Risks Grouped: Low Consequence, Low Likelihood

- 1. SA|SAGWNPS|ID|Older leaking systems have less pollution w/decreased rainfall SA|SAGWNPS|WS|Increased evapotranspiration – compromised integrity of water bodies
- 2. IS|ISG|PI|NPS pollution increase
- 3. PS|PSGCRE|EE|Changes to nutrient supply
- 4. PS|PSGCRE|ID|Availability of water for restoration and enhancement
- 5. PS|PSGCRE|WH|Defining habitat characteristics like pH may be affected by water temperature
- 6. PS|PSGCRE|WW|Increased growing season could cause plant stress if they require a dormant period
- 7. SA|SAGWNPS|OA|Ocean Acidification will lead to decreased pH which could impact mobilization of pollutants (e.g. metals)
- 8. IS | ISG | LU | Unknowns: how does conversion of agricultural land impact Galveston Bay?
- 9. IS|ISG|ID|Drought changes habitat functionality
- 10. IS | ISG | SL | Salinizes brackish areas --> increases the demand for freshwater to maintain salinity regimes
- 11. IS|ISG|WH|Warmer water may affect the dynamics of salinity stratification
- 12. IS | ISG | WH | Reduction in nutrient loading and productivity of estuary
- 13. PS|PSGNS|WW|Potentially more suitable for manatees and less cold stunning events for sea turtles