April 2023 Texas Commission on Environmental Quality

Galveston Bay Estuary Resilience Action Plan Texas Commission on Environmental Quality Grant Agreement 582-19-90217 Deliverable: Draft Galveston Bay Estuary Resilience Action Plan

> Prepared by Geotechnology Research Institute Houston Advanced Research Center Dr. Stephanie Glenn and Dr. Erin Kinney 8801 Gosling Drive The Woodlands, Texas 77381

> > Prepared for

TCEQ Galveston Bay Estuary Program Lindsey Lippert, Project Manager 17041 El Camino Real, Ste. 210 Houston, Texas 77058

April 2023

The preparation of this report was financed through grants from the Texas Commission on Environmental Quality and the U.S. Environmental Protection Agency

The Galveston Bay Estuary Resilience Action Plan is a stakeholder-driven project; the ideas and thoughts on stressors, risks, and management strategies were generated by stakeholders in the expert workgroup and do not necessarily reflect the official policy or position of Texas Commission on Environmental Quality.

Table of Contents

Acronyms	1
Galveston Bay	5
Comprehensive Conservation and Management Plan (Galveston Bay Plan, Second Edition)	5
Coastal Resilience	6
Stakeholder Expert Workgroup and Assessment Context	6
Galveston Bay Resilience Stressors and Risks	8
Context for Action Plan	17
Risk Approach	19
Adaptation/Mitigation Actions	21
Incorporating Adaptation/Mitigation Actions in the CCMP	32
Tracking Projects that Include Adaptation/Mitigation Actions	35
Conclusions	36
Appendix A	37
Appendix B	47

Figure 1: The stakeholder expert workgroup identified 11 estuary stressors facing Galveston Bay now a	and in
the future	8
Figure 2: Flow Diagram of two examples from Goal to Consequence/Probability Development	9
Figure 3: Outline of steps undertaken by the stakeholder expert workgroup	10
Figure 4: Series of Consequence/Probability Matrices for Estuary Resilience evaluated by GBP Goal	12
Figure 5: Overall High Consequence and High Probability Risks	16
Figure 6. Sankey Chart showing the relationships between stressors and adaptation/mitigation	
action grouping	33

Table 1: GBP Priorities/Goals	5
Table 2: Galveston Bay Estuary Resilience Assessment Stakeholder Expert Workgroup	7
Table 3: GBEP Potential Mitigation Partners	17
Table 4: Definition of Risk Approaches	20
Table 5: Evaluation of Potential Adaptation/Mitigation Actions and Strategies for Galveston Bay	24
Table 6: Adaptation/Mitigation Strategy Groupings vs. GBP Priorities/Goals	34
Table 7: Adaptation/Mitigation Strategy Groupings vs. Stressors	35
Table 8: Tracking Selected Adaptation/Mitigation Actions	36
Table 9: Example: Tracking Risk Reductions	36

Acronyms

ACS	Access to Galveston Bay Ecosystem Information
ССМР	Comprehensive Conservation and Management Plan for the Galveston Bay
EC	Galveston Bay Plan Priority "Engage Communities"
ECG	Galveston Bay Plan Goal Identifier for Galveston Bay Plan Priority "Engage Communities"
EE	Stressor identifier "Increase in Extreme Events"
EIH-UHCL	Environmental Institute of Houston at the University of Houston Clear Lake
EPA	Environmental Protection Agency
FWI	Freshwater Inflows
GBC	Galveston Bay Council
GBEP	Galveston Bay Estuary Program
GBF	Galveston Bay Foundation
GBP	The Galveston Bay Plan, 2nd Edition
GLO	Texas General Land Office
H-GAC	Houston-Galveston Area Council
HARC	Houston Advanced Research Center
НС	Habitat Conservation

ID	Stressor identifier "Increasing Drought"
IF	Stressor identifier "Increasing Inland Flooding (largely rain based)"
IS	Galveston Bay Plan Priority "Inform Science-Based Decision Making"
ISG	Galveston Bay Plan Goal Identifier for Galveston Bay Plan Priority/Goal "Inform Science-Based Decision Making"
LU	Stressor identifier "Changes to land use and the built environment (infrastructure)"
MS4	Municipal Separate Storm Sewer Systems
NEP	National Estuary Programs
NF	Stressor identifier "Nuisance Flooding"
NPS	Nonpoint Source
OA	Ocean Acidification
PEA	Public Education and Awareness
РНА	Public Health and Awareness
PI	Population Increase
PS	Point Source
PSGCRE	Galveston Bay Plan Goal Identifier for Galveston Bay Plan Priority "Protect and Sustain Living Resources: Conserve, restore, and enhance vital habitats in the lower portion of the Galveston Bay watershed"
PSGFI	Galveston Bay Plan Goal Identifier for Galveston Bay Plan Priority "Protect and Sustain Living Resources: Ensure adequate quantities of freshwater reach Galveston Bay"

PSGNS	Galveston Bay Plan Goal Identifier for Galveston Bay Plan Priority "Protect and Sustain Living Resources: Sustain and restore native species populations"	
RES	Research and Monitoring	
SA	Galveston Bay Plan Priority "Ensure Safe Human and Aquatic Life Use"	
SAGWBP	Galveston Bay Plan Goal Identifier for Galveston Bay Plan Priority "Ensure Safe Human and Aquatic Life Use: Increase public awareness of current public health risks/Reduce risk through WBPs"	
SAGWNPS	Galveston Bay Plan Goal Identifier for Galveston Bay Plan Priority "Ensure Safe Human and Aquatic Life Use: Reduce NPS and PS (including WWTF and sanitary sewer system) pollution"	
SC	Species Conservation	
SL	Stressor identifier "Sea Level Rise and subsidence"	
SPO	Stakeholder and Partner Outreach	
TAMU	Texas A & M University	
TAMUG	Texas A & M University at Galveston	
TCEQ	Texas Commission on Environmental Quality	
TNC	The Nature Conservancy	
TPWD	Texas Parks and Wildlife Department	
TWDB	Texas Water Development Board	
UH	University of Houston	
UHCL	University of Houston Clear Lake	
USFWS	United States Fish and Wildlife Service	

USGS	United States Geological Survey
WBPs	Watershed-based Plans
WH	Stressor identifier "Warmer Waters"
WS	Stressor identifier "Warmer Summers"
WW	Stressor identifier "Warmer Waters"
WWTF	Wastewater Treatment Facility

Galveston Bay

Galveston Bay is a 600 square mile, shallow, estuary on the upper Texas Gulf Coast. Galveston Bay is fed by the Trinity and San Jacinto Rivers, as well as coastal streams and bayous. The Bay and its surrounding watershed are a complex, interconnected system composed of biological, hydrological, and geological components. Galveston Bay provides resources and ecosystem services for the nearly six million people in the immediate surrounding region, including those of the dynamic Houston-Galveston metropolitan area.

The Galveston Bay Estuary Program (GBEP) was created in 1989 and is managed by the Texas Commission

on Environmental Quality (TCEQ). GBEP is one of 28 National Estuary Programs (NEP) administered by the United States Environmental Protection Agency (EPA) and one of two estuary programs in Texas. In conjunction with all 28 NEPs, the non-profit Association of National Estuary Programs helps to educate lawmakers and local communities on the importance of estuaries. Estuaries are important for their role in the ecosystem as a "nursery." GBEP works to preserve Galveston Bay for generations to come.

Table 1: GBP Priorities/Goals Engage Communities Susure Safe Human and Aquatic Life Use: Increase public awareness of current public health risks/Reduce risk through watershed-based plans (WBPs) Ensure Safe Human and Aquatic Life Use: Reduce nonpoint source (NPS) and point source (PS) (including wastewater treatment facility (WWTF) and sanitary sewer system) pollution Inform Science-Based Decision Making Protect and Sustain Living Resources: Conserve, restore, and enhance (vial habitats in the lower portion of the Galveston Bay watershed) Protect and Sustain Living Resources: Ensure adequate quantities of freshwater reach Galveston Bay Protect and Sustain Living Resources: Sustain and restore native species populations

Comprehensive Conservation and Management Plan (Galveston Bay Plan, Second Edition)

GBEP's strength comes from the collaborative partnerships that result from the implementation of the Galveston Bay Comprehensive Conservation and Management Plan [CCMP; also known as The Galveston Bay Plan, Second Edition (GBP)] (GBEP, 2018). The GBP provides a framework to address priority problems in the Galveston Bay Estuary. The core of the GBP lies in the four plan priorities (see Table 1) developed by the Galveston Bay Council (GBC) and its five subcommittees through a series of stakeholder workshops. Plan priorities and actions provide a roadmap for GBEP and its stakeholders, who coordinate to fund and implement activities to achieve identified goals.

Coastal Resilience

Coastal resilience is the ability of our coastal economic, social, and ecological systems to withstand change and quickly recover from disaster.¹ Resilient systems are managed in ways that anticipate and plan for future disruptions, allowing the system to adapt and thrive. Estuaries are dynamic environments with constantly changing tides, salinity regimes, fluctuating fish and wildlife populations, and habitats that migrate across landscapes. Resilient coastal communities manage their natural habitats in a manner that enables estuarine ecosystems and the adjacent built environment to better tolerate disturbances and promote estuarine resilience. The Galveston Bay Estuary Resilience Action Plan is a stakeholder-driven project with the purpose of assessing a series of coastal resilience criteria against the goals, objectives, and actions in the GBP. This is meant to compliment the GBP and provide resilience adaptation/ mitigation recommendations for implementers of the GBP. This report was developed in coordination with subject matter experts and members of the GBC and its subcommittees through a series of workshops with questions and discussion topics. For guidance, see the EPA's "Being Prepared for Climate Change: A Workbook for Developing Risk-Based Adaptation Plans."²

Stakeholder Expert Workgroup and Assessment Context

HARC established a workgroup of stakeholder experts to obtain input used in the development of the Galveston Bay Estuary Resilience Action Plan. The group consisted of relevant representatives and subject matter experts from the GBC, subcommittees, and other state and regional interests, who provided input and guidance throughout the project to ensure it aligned with the goals and objectives of the GBP. The stakeholder expert workgroup had representation from the United States Geological Survey (USGS), Texas Parks and Wildlife Department (TPWD), Galveston Bay Foundation (GBF), the Houston-Galveston Area Council (H-GAC), the Environmental Institute of Houston at the University of Houston Clear Lake (EIH-UHCL), Texas A&M University (TAMU), the United States Fish and Wildlife Service (USFWS), Texas General Land Office (GLO), Texas Water Development Board (TWDB), and The Nature Conservancy (TNC). Expertise representation was wide and varied, including water resources, habitat restoration, wetlands, social systems, and relative sea level rise. A complete list is included in Table 2.

¹ https://oceanservice.noaa.gov/ecosystems/resilience/

² https://www.epa.gov/cre/being-prepared-climate-change-workbook-developing-risk-based- adaptation-plans

Table 2: Galveston Bay Estuary Resilience Assessment Stakeholder Expert Workgroup

Organization	Expertise	
USGS	Water Resources	
EIH-UHCL	Water Resources/Ecology	
TPWD	Habitat Restoration	
GBF	Restoration	
TAMU AgriLife Extension Service	Habitat ecology	
H-GAC	Water Quality	
TPWD	Estuarine ecology	
TPWD	Kills and Spills	
USFWS	Estuarine ecology/restoration/conservation	
Texas A&M University at Galveston (TAMUG)	Relative sea level rise	
TAMU	Relative sea level rise & wetlands	
TAMUG	Phytoplankton/Freshwater Inflows	
TAMUG	Phytoplankton communities	
GBF	Social/Community	
Upper Coast Field - GLO	Coastal Biologist	
TCEQ	Coastal Programs Specialist	
Texas GLO	Coastal Resources	
TWDB	Inflows	
TNC	SLAMM, marine spatial planning	

An initial invitational facilitated workgroup meeting was held to provide an overview and purpose of the project and ask for stakeholder input from participants. The purpose of the initial meeting was to gain local perspectives and information and identify concerns or interests to the workgroup regarding Galveston Bay for inclusion in the vulnerability assessment focused on coastal resilience. The initial meeting focused on establishing the context for the Galveston Bay Estuary Resilience Action Plan, which involved identifying GBEP organizational goals susceptible to estuary stressors. The workgroup identified all the GBP priorities/goals as susceptible to estuary stressors (Table 1) (see Appendix A for the complete details on GBP Priorities). This initial brainstorming session focused on input and information on the Galveston Bay Estuary Resilience Action Plan, providing participants an opportunity to identify, list, and provide feedback on the GBP priorities/goals, risk identification, and potential stressors.

Galveston Bay Resilience Stressors and Risks

The stakeholder expert workgroup then moved on to risk identification, which involved discussing how estuary stressors will interact with the GBP priorities/ goals and how the impacts of the risks may make it difficult for GBEP to meet the GBP priorities/goals. The workgroup identified and defined 11 estuary stressors through this brainstorming session (Figure 1) that the workgroup thought were impactful when discussing coastal resilience. The following stressors are the ones that the group determined Galveston Bay is facing now and/or in the future. Changes to land use and the built environment (infrastructure) is linked to population increase, but distinct from it in order to focus on changes to the land. Chronic higher tides/nuisance **flooding** refers to high water that is marine or estuarine water and is not related to storm surge. Increase in extreme events (coastal flooding/storm surge) refers to flooding events that are marine/estuarine water related to a storm event. Increasing drought relates to both chronic dry weather and episodic drought "events." Increasing inland flooding (largely rain-based) refers to freshwater flooding and distinguishes these events from the marine/estuarine nuisance flooding and from storm

surge. *Ocean acidification* in the context of Galveston Bay has not been well studied. Here, we refer to the extent to which acidification of Gulf and ocean water and the processes that lead to it could lead to acidification of Galveston Bay water. The impacts discussed here are those for Galveston Bay waters. **Population increase** refers to the number of permanent residents and tourists in the Galveston Bay region. Sea level rise and subsidence refers to chronic. longterm rising marine/estuarine water that is caused by a combination of eustasy (the volume of the ocean based on water quantity and temperature) and subsidence (also referred to as Relative Sea Level Rise) in the Galveston Bay region. *Warmer summers* refers to an increase in both high daily air temperatures and average temperatures during the warmest part of the year. *Warmer waters* refers to the temperature of the water itself overall (i.e., not seasonally but rather daily), either due to increases in air temperature, reduction of cooler water inflows, etc. that would impact organisms in the water. Warmer winters refers to an increase in both high daily air temperatures and average temperatures during the coolest part of the year.

Figure 1: The stakeholder expert workgroup identified 11 estuary stressors facing Galveston Bay now and in the future

For each of the stressors, risks from the stressor on meeting the GBP priority were identified. So, for example, stakeholders were asked to consider: For the GBP priority/goal of Ensure Safe Human and Aquatic Life Use: Reduce NPS and PS (including WWTFs and sanitary sewer system) Pollution, how would the stressor of Warmer Summers pose risks that might impact GBEP in being able to meet that goal? The workgroup determined that for this stressor and goal, the defined risks were: a) using more water for irrigation leading to increased runoff, b) warmer summer water, increased likelihood of fecal indicator bacteria, and increased frequency of water quality exceedances of screening levels and c) increased evapotranspiration – comprised integrity of water bodies.

Risk Categorization: Consequence and Probability

The next step for the stakeholder expert workgroup was to take the stressors and risks developed during the initial workgroup meeting and follow-ups and convene for a second workgroup meeting to develop the risk analysis, which included selecting risks and stressors identified in the initial workshop and characterizing each risk to make an initial determination of consequence (impact) and probability (likelihood) of each risk. Risks were ranked on a qualitative scale for consequence and probability. For example, for the GBP priority/goal of Ensure Safe Human and Aquatic Life Use: Reduce NPS and PS (including WWTFs and sanitary sewer system) Pollution, and the stressor of Warmer Summers, the workgroup identified the risk of warmer summer water leading to increased likelihood of fecal indicator bacteria and increased frequency of water quality exceedance of screening levels. This risk was evaluated as having a high probability of occurrence if the stressor of Warmer Summers occurs, and medium consequence. Consequence was viewed as the impact the risk would have on an organization's goal were it to occur. Low consequence meant life would not be majorly

disrupted if the risk were to occur; the organization could adapt and meet its goals. High consequence was viewed as a major disruption, meaning the goal would be out of reach without significant efforts/adaptation/ mitigation and may not be attainable. The results from each workgroup meeting were then developed into a series of consequence/probability matrices. For each GBP priority/goal, the probabilities and consequences for each stressor/risk were illustrated according to all the possible combinations (high-medium-low) for the categories.

Figure 2 illustrates the risk identification and analysis process described above to create the qualification of high, medium, or low for each consequence and probability. There are five components required to create the consequence/probability matrix (blue), with specific examples listed below (Example A: green and Example B: yellow). Text between steps 4 and 5, as well as steps 5 and 6 provide further explanation of how consequences and probabilities were determined in the green example.

Figure 2: Flow Diagram of two examples from Goal to Consequence/Probability Development

A series of draft consequence/probability matrices for the risks identified during the second workgroup meeting were prepared and presented to the workgroup in a final workgroup meeting for the workgroup to review and provide input on the draft consequence/ probability matrices. The resulting series of consequence/probability matrices were developed over 18 months through three expert stakeholder workgroup meetings and targeted one-on-one stakeholder followup discussions. Through the development of the stressors, risks, consequences, probabilities and the final matrices, versions and rough drafts were sent out to the GBEP subcommittee heads (the chair and vice-chair of the Water and Sediment Quality, the Monitoring and Research, the Natural Resource Uses and the Public Participation and Education subcommittees) for input, edits, and comments. The following ideas and thoughts on stressors, risks and management strategies that went into the Galveston Bay Estuary Resilience Action Plan were generated by stakeholders in the expert workgroup to reflect the most likely impacts to Galveston Bay based on their years of research and experience working in the region. Figure 3 details the steps taken by the workgroup during the development of the Galveston Bay Estuary Resilience Action Plan.

Figure 3: Outline of steps undertaken by the stakeholder expert workgroup

Communication &	Informing key people about Galveston Bay Estuary Resilience Assessment & asking for input		
consultation	Identified stakeholder expert workgroup, reaching out through GBEP subcommittees		
Establishing the Context	Identifying organizational goals that are susceptible to estuary stressors		
	First workgroup meeting		
Risk Identification	Brainstorming about how estuary stressors will interact with organizations		
	First workgroup meeting		
Risk Analysis	Developing an initial characterization of consequence and probability for each risk		
	Second workgroup meeting		
Risk Evaluation	Using a consequence/probability matrix to build consensus about each risk		
	Third workgroup meeting		
Establishing Context	Review organization's environment and partners		
for Action	Fourth workgroup meeting		
Risk Evaluation:	Evaluating risks to determine overall approach		
	Fourth workgroup meeting		
Finding and Selecting Adaptation/Mitigation	Determine adaptation/mitigation actions for chosen risks to mitigate		
Actions	Fifth workgroup meeting		
Preparing an	Develop Plan with adaptation actions and show how they will support the CCMP		
	Review and sixth workgroup meeting		

Steps to Developing Galveston Bay Estuary Resilience Action Plan

In order to develop consequence and probability matrices, stakeholders in the expert workgroup progressed through the first five steps in Figure 3 for 15 GBP goals and the 11 estuary stressors suggested by the workgroup as the most likely to impact Galveston Bay (Table 1 and Figure 1). The creation of the consequence/probability matrices required five components as outlined below taken in context of **priorities/goals** from each of the GBP priorities (Table 1).

The results of the risk evaluation are the **Consequence**/ Probability Matrices by GBP Priority/Goal (Figure 4). For each matrix category, the stressors are listed first, with the risk in bold. As an example, for the GBP Goal of Engage Communities, the workgroup identified a stressor of Land Use Change. One of the risks the workgroup identified for the stressor of Land Use Change was Increased Impervious Surfaces. The workgroup evaluated the probability of Increased Impervious Surfaces as High, and the consequence of Increased Impervious Surfaces to meeting the GBP Goal of Engage Communities as Medium. Some stressors had the same risk associated with them. For example, in Figure 4, for all stressors associated with Nuisance Flooding, Increasing Extreme Event Flooding and Relative Sea Level Rise, the workgroup had identified the same risk of Increased flooding of property and habitat. Appendix B contains an assortment of Consequence/Probability Matrices sorted by: Stressor; and by consequence/probability overall, with all stressors and priorities combined.

Visualizing which risks are shared across goals, or which risks are considered both high consequence and high probability, or which risks might be most severe for a particular goal allows for targeted resource planning. For example, Figure 5 shows all risks grouped by High Consequence and High Probability. The ability to visualize the risks across all categories and goals that are considered both high for consequence and probability can help with adaptation/mitigation planning decisions. The matrices could be used as part of risk evaluation (assessing risks to determine which ones an organization will move forward within the action planning process), finding and selecting adaptation/mitigation actions and, possibly, developing a risk-based adaptation/mitigation action plan.

The consequence/probability matrix is a tool for visualizing how estuary stressors and their risks are categorized by experts in the field. These matrices allow GBEP and its subcommittees to evaluate priorities, concerns and issues concerning estuary resilience planning. Since risks, consequences and probabilities have been developed according to GBP priority/goal, the GBEP can use the Galveston Bay Estuary Resilience Assessment as a guide for planning for coastal resilience that align with the GBP goals. Figure 4: Series of Consequence/Probability Matrices for Estuary Resilience evaluated by GBP Goal

GBP Goal: Engage Communities

GBP Goal: Ensure Safe Human and Aquatic Life Use: Increase public awareness of current public health risks/Reduce risk through WBPs

GBP Priority/Goal: Ensure Safe Human and Aquatic Life Use: Reduce NPS and PS (including WWTFs and sanitary sewer system) pollution

ability of Occurrence)	Hgh	 Increasing Extreme Ever Flooding WWTF will ge more often Increasing Extreme Ever Flooding Frequency of sewers infiltration even increase Increasing Inland Floodi Increase quantification of will lead to pollutant lo increase Increasing Inland Floodi Potential for increased overtopping and "leakii systems" releasing grea pollutants 	nt 1. offline 2. sanitary 2. sintary 1. ng 2. ng	Warmer Summers Warmer Winters More water for irrigation leading to increased runoff Warmer Summers Lead to warmer water, increased likelihood of fecal indicator bacteria and water quality exceedances	 Nuisance Flooding Septic systems and WWTF and lift stations could fail Increasing Extreme Event Flooding New sources of pollution Increasing Drought Increased water usage Increasing Inland Flooding Could Increase erosion of streambeds Population Increase Increased population leads to increase in sources of NPS pollutants Relative Sea Level Rise High water tables will drown coastal septic systems causing them to fail Relative Sea Level Rise Greater coastal wetland losses
iood (Prob	Medium	 Ocean Acidification Lea decreased pH 	ad to 1. 2. 3.	Land Use Change Increase in impervious surfaces leads to increased runoff Increasing Drought Increasing bacteria load Population Increase Increased quantity and decreased quality of stormwater	1. Relative Sea Level Rise Potential increase of saltwater intrusion
Likelih	Low	 Increasing Drought Old "leaking systems" have pollution due to decrea rainfall Warmer Summers Incr evapotranspiration 	ler 1. less ised 2. 3. eased	Warmer Waters Increased bacterial growth, Increasing bacteria load exceedances Warmer Winters Eliminates freeze events Warmer Winters Lead to warmer water, increased likelihood of fecal indicator bacteria and water quality exceedances	
		Low		Medium	High
		Consequence			

GBP Goal: Inform Science – Based Decision Making

Likelihood (Probability of Occurrence)	High	 Warmer Winters Potential for prolonged time period of bacterial/pathogen presence 	Nuisance Flooding Unknowns: do chronic higher tides impact restored wetlands Increasing Extreme Event Flooding Reduction of positive impacts of freshwater inflow Increasing Drought Less freshwater inflow Increasing Drought Prolonged reduced freshwater has long term effects Increasing Drought Increased salinity in brackish habitats Increasing Inland Flooding Changes in inflow regime Population Increase Increased chances of red and brown tides Population Increase Increased changes in inflow regime Population Increase Increased demand places more pressure on available freshwater supply Relative Sea Level Rise Reduction of positive impacts of freshwater inflow Normer Summers Warmer Winters Increased bacteria levels Warmer Winters More & stronger tropical storms/hurricanes Warmer Winters Morease in invasive species in Galveston Bay Warmer Winters Potential for prolonged hurricane season	 Land Use Change Increase in impervious surfaces leads to increase of freshwater Increasing Extreme Event Flooding Potential for increased spills/contaminants entering the bay system Warmer Summers Warmer Winters Increased evapotranspiration – less freshwater inflow Warmer Summers Potential for more & stronger tropical storms/hurricanes
	Medium	 Land Use Change Unknowns: how conversion of agricultural land impacts the Bay? Increasing Drought Unknowns: does drought change habitat functionality? Relative Sea Level Rise Salinizes brackish area Warmer Waters Impact dynamics of salinity stratification Warmer Waters Reduction in nutrient loading/productivity of estuary Population Increase More people to educate and promote water conservation 	 Relative Sea Level Rise Increased extent of marine water may impact the freshwater balance of the bay Warmer Summers Essential food sources may die off Warmer Summers Unknowns: do warmer summers impact oyster reefs Warmer Waters Changes in communities to more tropical composition Warmer Winters Increased evapotranspiration 	 Warmer Summers Heat stress to native populations Warmer Summers Changes in communities to more tropical composition Increasing Extreme Event Flooding Unknowns: how do storms impact freshwater wetlands? Warmer Waters Unknowns: How does warmer water impact phytoplankton community composition?
	N	1. Population Increase NPS pollution increase	1. Warmer Waters More users on the water for prolonged time (extent of the year)	1. Warmer Winters Changes in communities to more tropical composition
		Low	Medium	High
		Consequence		

GBP Goal: Protect and Sustain Living Resources: Conserve, restore and enhance vital habitats in the lower portion of the Galveston Bay watershed

currence)	Hgh	 Increasing Drought Changes to sediment loads Increasing Drought Loss of seasonal wetlands Increasing Inland Flooding Low light due to increased sediment load Warmer Summers Increased evapotranspiration which could lead to aquatic/subtidal species composition change Warmer Summers Warmer Winters Increase plant productivity, vertical accretion and carbon sequestration Warmer Waters Increased water temperatures could cause changes in phytoplankton community composition 	 Nuisance Flooding Loss of outer marsh habitat Nuisance Flooding Habitat loss, conversion, and migration impact native species Nuisance Flooding May create unfavorable habitat conditions more frequently Increasing Extreme Event Flooding Increasing Inland Flooding Movement of invasive species Increasing Drought Loss of tree and vegetative cover Increasing Extreme Event Flooding Recreational fishing pressure Relative Sea Level Rise Changing spatial extent of available habitat Warmer Waters Increase in oyster predation and parasites 	Increasing Extreme Event Flooding Increasing Inland Flooding Increased stream erosion and sediment loads Increasing Extreme Event Flooding Increasing Drought Loss of habitat Increasing Drought Increased evapotranspiration Population Increase Loss of native habitat to development Relative Sea Level Rise Increased extent of saline waters Relative Sea Level Rise Increased extent of saline waters Relative Sea Level Rise Changing light attenuation Warmer Summers Could expand range of invasive species Warmer Waters Increased stratification Warmer Waters Increased stratification Warmer Winters Will enhance survival of insect pests Ocean AcidIfication Unknowns: Bay oysters impacted by acidIfication
Likelihood (Probability of O	Medium		 Increasing Extreme Event Flooding Increase in frequency and intensity of high salinity events Increasing Drought Area of suitable habitat decreases Increasing Inland Flooding Loss of habitat Increasing Inland Flooding Increase in frequency, intensity of decreased salinity events Increasing Inland Flooding Impacts for riparian fish spawning Population Increase Impacts from increased human pollution Relative Sea Level Rise Habitat conversion to open water Increasing Inland Flooding Correlation with drop in salinity and increase in lesions on bottlenose dolphins Increasing Inland Flooding Correlation with drop in salinity and impact on sea turtles 	 Land Use Change Increase in impervious surfaces leads to increased runoff Land Use Change Coastal barriers reduce tidal exchange Land Use Change Loss of native habitat due to development Relative Sea Level Rise Increased marsh flooding
	low	 Increasing Extreme Event Flooding Changes to nutrient supply Increasing Drought Availability of water for restoration and enhancement Warmer Waters Defining habitat characteristics like pH impacted by water temp Warmer Winters Increased growing season could cause plant stress if they require dormant period 	 Increasing Inland Flooding Changes to nutrient supply 	 Land Use Change Population Increase Increase nutrient input and turbidity Nuisance Flooding Increase marsh habitat range further upslope Ocean Acidification Potential impacts on shellfish and other sedentary organisms
		Low	Medium	High
Consequence		Consequence		

GBP Goal: Protect and Sustain Living Resources: Ensure adequate quantities of freshwater reach Galveston Bay

od (Probability of Occurrence)	High		1. Increasing Extreme Event Flooding Changes periodicity of freshwater inflows	 Increasing Drought Increasing demand on water resources; decrease in discharge to Galveston Bay Increasing Drought Base flow in streams may decrease Increasing Drought Increase in demand on groundwater = further reduction of base flow Warmer Summers Increased evapotranspiration will decrease freshwater inflows
	Medium		 Increasing Extreme Event Flooding Changes periodicity of freshwater inflows Relative Sea Level Rise Loss of wetlands could impact quality of freshwater inflows Warmer Summers Warmer Waters Warmer Winters Increased evapotranspiration will increase salinity in upstream reaches 	 Land Use Change Reservoir operations can shift the timing and amount of peak inflows Increasing Extreme Event Flooding Accumulated impacts from other stressors Relative Sea Level Rise Less availability of groundwater = more demand on surface water, decreased base flow Warmer Summers Harmful algal blooms are more likely to develop in warm, salty water Warmer Waters Warmer Winters Increased evapotranspiration will decrease freshwater inflows
Likelih	Low		 Increasing Extreme Event Flooding Increasing Inland Flooding Changes seasonality of freshwater inflows 	
		Low	Medium	High
			Consequence	

GBP Goal: Protect and Sustain Living Resources: Sustain and restore native species populations

Likelihood (Probability of Occurrence)	High	1. Warmer Winters Proliferation of mangroves in Galveston Bay is likely if deep freezes occur less often	1. Increasing Drought Sessile organism stress	Increasing Inland Flooding Changes in shallow water habitat and secondary impacts of juvenile stages of estuarine and marine organisms Relative Sea Level Rise Increased marsh flooding Relative Sea Level Rise Changing spatial extent of available habitat Relative Sea Level Rise Loss of restored and enhanced habitat due to drowning Warmer Winters Could alter habitat distribution and lower dissolved oxygen in some area
	Medium	1. Warmer Winters Potentially more suitable for manatees and less cold stunning events for sea turtles	 Increasing Extreme Event Flooding Increasing Inland Flooding Habitat loss, conversion, and migration hold implications for native species Relative Sea Level Rise Increased extent of saline waters Warmer Summers Heat stress to native populations Warmer Summers Warmer Winters Increased salinity can impact distribution, abundance, and productivity of native species Warmer Summers Life cycle stages is influenced by environmental cues Warmer Summers Shifts in fisheries populations Warmer Waters Varmer Winters Oyster reef loss to dermo and oyster drilling predators Warmer Waters Correlation with drop in salinity and increase in lesions on bottlenose dolphins Warmer Winters Could expand range of invasive species 	 Increasing Extreme Event Flooding Changes in shallow water habitat and secondary impacts on juvenile estuarine and marine organisms Increasing Drought Species may not tolerate new drought regimes Increasing Drought Increasing marine and invasive species including predators, parasites, and diseases Increasing Drought Increased conditions for harmful algal blooms Relative Sea Level Rise Changing light attenuation Warmer Summers Increased water temperatures would increase oyster predation and parasites Warmer Summers Warmer water temperatures have been linked to long-term decline in blue crab abundance Warmer Winters Potential increase in pests
	low		 Increasing Extreme Event Flooding Increasing Drought Increasing Inland Flooding Potential adverse effect for secretive marsh birds like rails if drier transition habitats are not available Increasing Drought Increase in stranding events and inundation of freshwater habitats Increasing Drought Shifting vegetation community composition Warmer Winters Potential to increase return intervals for wildfires affect vegetation structure and use by threatened or endangered species 	
		Low	Medium	High
		Consequence		

Figure 5: High Consequence -- High Probability Risks

Context for Action Plan

Using the matrices shown in Figure 4, the stakeholder expert workgroup met to identify and recommend risk evaluations and identify and select adaptation/mitigation actions. In order to continue development of the Galveston Bay Estuary Resilience Action Plan, stakeholders in the expert workgroup progressed through the last steps 6-9 in Figure 3. The workgroup meetings were used to assess the risks as High Consequence and High Probability, and likely to occur within the next 10 years. The workgroup reviewed the organizational context (GBP Goals) and identified a list of potential partners including identification of common organizational goals, objectives, or work areas where potential partners could help with the risks.

Table 3: GBEP Potential Witigation Partners
American Bird Conservancy
Armand Bayou Nature Center
Artist Boat
Association of National Estuary Programs
Audubon Texas
Bayou Land Conservancy
Bayou Preservation Association
Black Cat GIS
CenterPoint Energy (Utilities)
Chambers County
Chambers-Liberty County Navigation District
Children's Environmental Literacy Foundation
Citizen (including community representatives and retired and emeritus stakeholders)
Citizens' Environmental Coalition
City of Houston
City of Pearland
Coastal Conservation Association - Texas
Ducks Unlimited
East Harris County Manufacturers' Association (Axiall, LLC)
EcoRise
GBF
Galveston County
Galveston County Health District
Greater Houston Partnership (Dow Chemical)
Gulf Coast Authority
Gulf Of Mexico Alliance
Harris County Flood Control District
HARC

17

Houston Parks and Recreation Department Houston Parks Board Houston Wilderness H-GAC Jeri's Seafood (Commercial Fisheries)
Houston Parks Board Houston Wilderness H-GAC Jeri's Seafood (Commercial Fisheries)
Houston Wilderness H-GAC Jeri's Seafood (Commercial Fisheries)
H-GAC Jeri's Seafood (Commercial Fisheries)
Jeri's Seafood (Commercial Fisheries)
Coastal (formarly Katy) Prairie Consonyangy
Coastal (formerly Katy) Prairie Conservancy
KPRC
Kuraray America Inc. (Industries)
League of Women Voters
Lee College
Lyondell Basell (Industries)
Marina Bay Harbor (Marinas)
National Oceanic and Atmospheric Association
Native Prairies of Texas Association
North American Association of Environmental Educators
NRG Energy
Port Houston
Prairie View A&M University
RESTORE Council
San Jacinto River Authority
Scenic Galveston
Sierra Club
Student Conservation Association
Texas A&M AgriLife - Extension Service
Texas A&M AgriLife - Texas Community Watershed Partners
Texas A&M Forest Service
Texas A&M Texas Water Resources Institute
Texas A&M University - College Station
Texas A&M University - Corpus Christi
TAMUG
Texas A&M University - Geochemical Environmental Research Group
Texas Coastal Partners - Shead Conservation Solutions (Other Conservation Associates)
TCEQ
Texas Department of Agriculture
Texas Department of State Health Services
Iexas Department of Transportation
GLU Texas Master Naturalists

TPWD
Texas Railroad Commission
Texas Sea Grant
Texas State Soil and Water Conservation Board
TWDB
TNC
Trinity River Authority
Turtle Island Restoration Network
U.S. Army Corps of Engineers
U.S. Coast Guard
U.S. Department of Agriculture - Natural Resources Conservation Service
EPA
USFWS
USGS
UH
UHCL

Risk Approach

As the matrices show, many of the risks are not only related but also have the potential to build on each other and impact several of the GBP Goals. With connecting systems, a single stressor will affect more than one resource or Plan Goal. At the same time, adaptation or mitigation strategies will often mitigate the impact or risk of more than one stressor. Ranking risks as high, medium, or low enables adaptation/mitigation strategies based on prioritization. When time, money or other resources are limited, responding to risks with high consequence and high probability is the top priority because they are very likely to happen and will have high impacts when they do. Medium and low risks are not ignored, but they can be addressed in the future or as capacity allows. In addition, with connecting systems, often adaptation or mitigation actions selected for a high consequence/high probability risk will address medium and low risks as

well. Each risk identified by the workgroup as High Consequence and High Probability, and likely to occur within the next 10 years, was evaluated for a risk approach that was determined by the workgroup as the best approach – Mitigate, Transfer, Accept, or Avoid³.

The approach of Transfer: Assist partners with state/ federal/local assistance programs was removed from later lists at the request of the stakeholder expert workgroup. GBEP rarely carries out projects itself; it usually supports other organizations that mitigate risks by funding and/or assisting partners to finance and do the work. Given how GBEP supports other partners in executing adaptation/mitigation actions in nearly every case, "transfer" was removed from lists of the adaptation/mitigation actions to focus on the mechanisms behind the adaptation/mitigation actions.

³ https://www.epa.gov/cre/being-prepared-climate-change-workbook-developing-risk-based- adaptation-plans

Table 4: Definition of Risk Approaches

Approach to risk	Definition of approach to risk			
Mitigate Take action to lower the consequence or likelihood of the risk (or bot Address the risk or lead the effort to address the risk.				
Transfer Another party has responsibility for mitigating the risk. Allow or ask others to take the lead and GBEP will assist if applicable.				
Accept	Run the risk. Accept that the consequences may occur. Business as usual despite the risk. Monitor and reassess options in the future.			
Avoid	Take organizational or administrative action so that GBEP will not be exposed to the risk.			

The workgroup met to strategize on categorizations of risk approach. Table 4 outlines the discussion points for each risk approach. The workgroup then brainstormed a risk approach category for all the high consequence and high probability risks. Risks that were identified as mitigate or transfer were grouped for further identification of adaptation/mitigation actions. Because the group had focused on categorizing only high consequence and high probability risks, the group determined that none of the risks were avoidable. Four risks were categorized as Accept; note that the stakeholders felt the best course of action was to categorize them as Accept/Monitor, feeling that the best approach on this was to keep an eye on the situation until how to adapt for the risk could be determined. These risks were: increased stratification due to warmer waters; warm winters will enhance survival of insect pests due to warmer winters; base flow in streams may decrease due to increasing drought and warmer water could alter habitat distribution and lower dissolved oxygen in same areas due to warmer water. The risks that were identified as accept or avoid were accepted and not evaluated further as part of the adaptation/ mitigation action strategy development.

Adaptation/Mitigation Actions

Based on the risk approaches selected in the first round of stakeholder expert workgroup meetings, the workgroup met again to determine Adaptation/ Mitigation Actions for the risks that were categorized as mitigate. In addition to risk reduction potential, the workgroup was encouraged to assess other criteria such as feasibility, effectiveness, equity, and costeffectiveness. The goal of the adaptation and mitigation actions is that they could mitigate the risk by bringing either the consequence or probability down to a medium or low. Any suggested partners listed in the Galveston Bay Estuary Resiliency Action Plan is not a commitment of funding or participation and could be subject to change.

The workgroup met and brainstormed on adaptation and mitigation actions that were occurring now or

should occur in the future to help protect the health of Galveston Bay. These various actions ranged from specific programs to educational opportunities to land conservation to broader monitoring and research goals. From these detailed actions, nine adaptation/mitigation action categories were discussed and decided on by the workgroup, along with examples of organizations who are currently or will be soon carrying out adaptation/ mitigation actions. The following list details these adaptation/mitigation action categories, which are also seen in Table 5. The workgroup decided to identify some responsible parties (with several specific highlighted examples below) but did not want to limit or focus on responsible parties. They opted to focus on the adaptation/mitigation actions and leave the responsible parties open for collaborative opportunities.

Quick Reference Guide 2: Pathway to Consequence/Probability Matrices Development

- Stakeholder Outreach: Education Education of stakeholders in this context is meant to include both formal education and community or industry-based workshops, webinars, and similar long-form outreach activities that provide information and context in an audience-appropriate format. [Texas A&M AgriLife Extension, GBF, H-GAC, USGS, TWDB]
 - Stakeholder Outreach: Education would address stressors such as:
 - Chronic higher tides/nuisance flooding
 - Increase in extreme events (coastal flooding/storm surge)
 - Population Increase
 - Sea Level Rise + subsidence
 - o Warmer Summers
 - Warmer Waters
 - Warmer Winters
- Stakeholder Outreach: Alerts/Risk Organizations have different means and methods to alert stakeholders to risks. Posted signs, websites, text alerts, fliers. [Texas Department of State Health Services, cities, and municipalities]
 - Stakeholder Outreach: Alerts/Risk would address stressors such as:
 - Increase in extreme events (coastal flooding/storm surge)
 - Increasing Drought
 - Increasing Inland Flooding (largely rain-based)
 - Warmer Summers
 - o Warmer Waters
 - o Warmer Winters

- Monitoring Observing the system at risk to characterize how risks impact it in order to identify and execute appropriate mitigation actions if/when needed. [USGS, GLO, U.S. Army Corps of Engineers, TAMUG, UH, GBF]
 - Monitoring would address stressors such as:
 - Chronic higher tides/nuisance flooding
 - Increase in extreme events (coastal flooding/storm surge)
 - Increasing Drought
 - Increasing Inland Flooding (largely rain-based)
 - Sea Level Rise + subsidence
 - Warmer Summers
 - o Warmer Waters
 - Warmer Winters
- Implementation of WBPs WBPs are supported by TCEQ, H-GAC, and others to bring stakeholders together to create community developed documents to identify potential sources of waterbody impairments throughout a watershed and provide a framework for implementation strategies to reduce pollution and improve overall water quality in Texas streams and rivers. Implementation measures are the next step in realizing the goals and needs of the communities. [GBEP and H-GAC fund WBPs]
 - Implementation of WBPs would address stressors such as:
 - Changes to land use and the built environment (infrastructure)
 - Chronic higher tides/nuisance flooding
 - Increase in extreme events (coastal flooding/storm surge)
 - Increasing Drought
 - Increasing Inland Flooding (largely rain-based)
 - Population Increase
 - Sea Level Rise + subsidence
 - o Warmer Summers
 - Warmer Waters
- Preservation/Conservation/Restoration Preservation of lands, waters and habitats seeks to
 protect natural areas from use. Conservation seeks to use natural areas properly. Restoration's
 goal is to return natural areas to what they were or at least to functional parts of their
 ecosystem. [GBF, TPWD, Artist Boat, GLO, TNC]
 - Preservation/Conservation/Restoration would address stressors such as:
 - Increase in extreme events (coastal flooding/storm surge)
 - Increasing Drought
 - Increasing Inland Flooding (largely rain-based)
 - Population Increase
 - Sea Level Rise + subsidence
 - o Warmer Summers

- Research Research is required when not enough information is known about the environment, ecosystems, or community at risk to better understand what the impacts are and if/how they should be mitigated. [USGS, HARC, TAMUG, UH, Rice University, HARC, TWDB]
 - Research would address stressors such as:
 - Increase in extreme events (coastal flooding/storm surge)
 - Increasing Drought
 - Increasing Inland Flooding (largely rain-based)
 - Sea Level Rise + subsidence
 - o Warmer Summers
 - o Warmer Waters
 - o Ocean Acidification
- Promote Water Conservation and Reuse Cities, council of governments, non-profits, water agencies, and local municipal utility districts can and should promote water conservation and may provide programming. City of Houston, GBF, and others promote and provide rain barrels and workshops on how to use them. [H-GAC, GBF, TWDB promote water conservation]
 - Promote Water Conservation and Reuse adaptation actions would address stressors
 - such as:
 - Changes to land use and the built environment (infrastructure)
 - Increasing Drought
 - Increasing Inland Flooding (largely rain-based)
 - o Warmer Summers
- Promote Native Habitat Special consideration should be given to preserving, conserving, restoring (including removing/preventing invasive species), monitoring, and educating the public about native habitats. [TPWD, Coastal Prairie Conservancy, Texas A&M AgriLife Extension, TNC]
 - Promote Native Habitat adaptation actions would address stressors such as:
 - Increasing Drought
 - Sea Level Rise + subsidence
 - Warmer Summers
 - o Warmer Waters

Table 5 outlines the stakeholder expert workgroup's list of stressors and risks Galveston Bay is facing now and in the future. With each risk, the potential adaptation/ mitigation action strategies are identified, with some specific adaptation/mitigation actions outlined. For every adaptation/mitigation action, Table 5 outlines if the adaptation/mitigation action will reduce the likelihood of the risk occurring and/or reduce the consequence of the risk should it occur. Table 5 will serve as a reference for GBEP and GBEP stakeholders to prioritize strategic initiatives and projects based on which combination of stressors, risks, and likelihoods/ consequences are the focus for implementation.

Table 5: Evaluation of Potential Adaptation/Mitigation Actions and Strategies for Galveston Bay

Stressors appear in bold type, Risks appear in italics. Stressors and Associated Risks Selected for Adaptation/Mitigation are color coded by the CCMP goals they address: purple for Engage Communities, blue for Ensure Safe Human and Aquatic Life Use, orange for Inform Science-Based Decision Making, green for Protect and Sustain Living Resources. WBPs = Watershed-based Plans.

Stressors and Associated <i>Risks</i> Selected for Adaptation/ Mitigation	Potential Adaptation/Mitigation Action Strategies	Could the action reduce likelihood of the <i>risk</i> ?	Could the action reduce consequence of the <i>risk</i> ?	Selected Examples of Adaptation/Mitigation Actions
Nuisance flooding, sea level rise and subsidence, and/ or extreme event	Stakeholder Outreach: Education	NO	YES	Development of resilience
flooding leading to increased flooding of property and habitat	Monitoring	NO	YES	data with stakeholders
Warmer summers	Stakeholder Outreach: Education	YES	YES	Bacteria monitoring
and warmer waters leading to	Monitoring	NO	YES	on beaches, streams, and lakes; informing
increased bacteria	Implementation of WBPs	YES	YES	stakeholders
Warmer waters	Stakeholder Outreach: Education	NO	NO	Monitoring on beaches; informing stakeholders
heat stress	Monitoring	NO	YES	
Ocean acidification leading to loss of oyster reef habitat	Research	NO	YES	Research on current state of Galveston Bay acidification; share data with stakeholders
Extreme events	Stakeholder Outreach: Alerts/Risk	YES	YES	WBPs; water quality criteria; using genetic and traditional methods to track sources of bacteria and pathogens
and inland flooding leading to <i>bacteria in flood</i>	Monitoring	NO	YES	
waters	Implementation of WBPs	YES	YES	
Extreme events leading to <i>exposure</i> to pollutants in flood waters	Stakeholder Outreach: Alerts/Risk	YES	YES	Wet weather monitoring
Rising sea level and	Stakeholder Outreach: Education	YES	NO	Inform stakeholders of
to greater coastal wetland losses,	Implementation of WBPs	YES	YES	threats; WBPs; conserve coastal habitat
resulting in less filtration of water	Preservation/Conservation/ Restoration	YES	YES	GBEP and partners

Stressors and Associated <i>Risks</i> Selected for Adaptation/ Mitigation	Potential Adaptation/Mitigation Action Strategies	Could the action reduce likelihood of the <i>risk</i> ?	Could the action reduce consequence of the <i>risk</i> ?	Selected Examples of Adaptation/Mitigation Actions
Warmer summers leading to <i>increased</i>	Stakeholder Outreach: Education	YES	YES	WBPs; water quality
bacteriological standards	Implementation of WBPs	YES	YES	criteria
Warmer waters leading to increased vibrio	Stakeholder Outreach: Alert/Risk	NO	YES	Monitoring and
illnesses (increased communication on public health risks	Monitoring	NO	YES	stakeholder alerts
Nuisance flooding leading to increase in extent of tidal flooding, causing more septic systems and wastewater treatment facilities and lift stations to fail - lead to long-term pollutant load increase	Implementation of WBPs	NO	YES	WBPs
Extreme events leading to increase in extent of tidal flooding, leading	Monitoring	NO	YES	Monitoring; research on
to new sources of pollution from floating tanks, runoff, etc.	Research	NO	YES	tanks in storms
Increasing drought leading to increased human use of water for irrigation, leading to increased runoff	Implementation of WBPs	YES	YES	WBPs; green infrastructure; water conservation programs

Stressors and Associated <i>Risks</i> Selected for Adaptation/ Mitigation	Potential Adaptation/Mitigation Action Strategies	Could the action reduce likelihood of the <i>risk</i> ?	Could the action reduce consequence of the <i>risk</i> ?	Selected Examples of Adaptation/Mitigation Actions
Inland flooding leading to increased erosion of streambeds, increasing	Implementation of WBPs	YES	YES	WBPs; conserve riparian habitat; native plant restoration; soil conservation; green infrastructure
sedimentation, and decreasing width of riparian corridors, which reduces vegetated land available for filtration, increasing short-term and long- term pollutant loads	Preservation/Conservation/ Restoration	YES	YES	
Increased population leading	Implementation of WBPs	YES	YES	WBPs; stakeholder outreach; green infrastructure; trash, litter, and microplastics prevention
to increase in pollutant sources	Stakeholder Outreach: Education	YES	YES	
Sea level rise and subsidence leading to higher water tables/increase in extent in tidal flooding will drown coastal septic systems causing	Implementation of WBPs	NO	YES	WBPs; stakeholder outreach; state funds to replace failing septic systems
them to fail - lead to short-term and long- term pollutant load increases	Stakeholder Outreach: Education	NO	YES	
Sea level rise and subsidence leading to contaminated sites that may flood or have shoreline erosion	Preservation/Conservation/ Restoration	YES	YES	Identify sites on the Superfund ¹ National Priorities List subject to coastal influence and develop plans for protection

¹Any protection plans will not intrude on boundaries of superfund site, and will be developed in consultation with TCEQ/EPA (appropriate parties).

Stressors and Associated <i>Risks</i> Selected for Adaptation/ Mitigation	Potential Adaptation/Mitigation Action Strategies	Could the action reduce likelihood of the <i>risk</i> ?	Could the action reduce consequence of the <i>risk</i> ?	Selected Examples of Adaptation/Mitigation Actions
Changes in land use and infrastructure leading to increased impervious surfaces, resulting in increased	Implementation of WBPs	YES	YES	WBPs; stakeholder outreach; carbon storage research; green infrastructure
runoff and alter the quantity, timing, and duration of inflows	Promote Water Conservation and Reuse	YES	YES	GBEP/Partners: WBPs, carbon storage research
Extreme events leading to increase in the potential for	Implementation of WBPs	NO	YES	Development and implementation of
spills/contaminants entering the bay system	Monitoring	NO	YES	response plans; monitoring
Warmer summers leading to increased evapotranspiration	Promote Water Conservation and Reuse	YES	YES	Initiate studies on evapotranspiration in the Galveston Bay watershed
- less freshwater inflow, compromised water quality	Research	YES	YES	
Warmer waters leading to <i>increased</i> evapotranspiration	Promote Water Conservation and Reuse	YES	YES	Initiate studies on evapotranspiration in the Galveston Bay watershed; supply information to decision makers regarding inflow updates
- less freshwater inflow, compromised water quality	Research	YES	YES	
Warmer summers leading to <i>increase</i>	Research	NO	YES	Master plans; coastal
in the potential for more and stronger	Monitoring	NO	YES	research and monitoring; storm research and
tropical storms/ hurricanes	Implementation of WBPs	NO	YES	monitoring
Extreme events leading to increased	Preservation/Conservation/ Restoration	YES	YES	Living shorelines, breakwaters, support for public and private landowners
stream erosion and sediment loads	Stakeholder Outreach: Education	NO	YES	

Stressors and Associated <i>Risks</i> Selected for Adaptation/ Mitigation	Potential Adaptation/Mitigation Action Strategies	Could the action reduce likelihood of the <i>risk</i> ?	Could the action reduce consequence of the <i>risk</i> ?	Selected Examples of Adaptation/ Mitigation Actions
	Research	NO	YES	Restore/enhance riparian corridors along watershed bayous; green
leading to increased stream erosion and	Promote Water Conservation and Reuse	YES	YES	
sediment loads	Preservation/Conservation/ Restoration	YES	YES	infrastructure
	Preservation/Conservation/ Restoration	YES	YES	
Extreme events leading to <i>loss of</i> habitat	Implementation of WBPs	YES	YES	Land conservation and native habitat restoration project implementation
	Stakeholder Outreach: Education	NO	YES	
Increasing drought	Research	YES	YES	Restore/enhance riparian corridors
leading to loss of habitat for riparian spawning fish	Promote Water Conservation and Reuse	YES	YES	
species	Preservation/Conservation/ Restoration	YES	YES	
Population increase leading to <i>loss of</i>	Stakeholder Outreach: Education	YES	YES	Land conservation and native habitat
native habitat due to development	Preservation/Conservation/ Restoration	YES	YES	preservation; promote benefits of native habitat to stakeholders
Inland flooding leading to changes in shallow water habitat and	Preservation/Conservation/ Restoration	NO	YES	Habitat restoration, and shoreline enhancement projects that restore rookery islands, intertidal marsh,
secondary impacts on juvenile stages of estuarine and marine organisms	Monitoring	NO	YES	and shallow water habitats to sustain and restore native species populations; land conservation

Stressors and Associated <i>Risks</i> Selected for Adaptation/ Mitigation	Potential Adaptation/Mitigation Action Strategies	Could the action reduce likelihood of the <i>risk</i> ?	Could the action reduce consequence of the <i>risk</i> ?	Selected Examples of Adaptation/Mitigation Actions
	Preservation/Conservation/ Restoration	NO	YES	Habitat acquisition/ restoration, and enhancement projects that allow for marsh migration to sustain and restore native species populations
subsidence leading to increased marsh	Stakeholder Outreach: Education	NO	YES	
flooding	Monitoring	NO	YES	
Sea level rise and	Preservation/Conservation/ Restoration	NO	YES	Habitat acquisition projects that allow
subsidence leading to changing spatial extent of available	Monitoring	NO	YES	for marsh migration to sustain and restore native species populations; baseline and gap analysis of conservation projects
habitat	Promote Native Habitat	NO	YES	
Sea level rise and	Preservation/Conservation/ Restoration	YES	YES	Habitat enhancement and restoration projects that sustain and restore native species populations; wetland
to loss of restored and enhanced	Monitoring	YES	YES	
drowning	Promote Native Habitat	NO	YES	management on prior projects
Warmer waters leading to altered habitat distribution and lower dissolved oxygen	Monitoring	NO	YES	Intertidal marsh and shoreline enhancement/ restoration projects to sustain and restore native species populations by recreating historic marsh complexes and reducing open water

Stressors and Associated Risks Selected for Adaptation/ Mitigation	Potential Adaptation/Mitigation Action Strategies	Could the action reduce likelihood of the <i>risk</i> ?	Could the action reduce consequence of the <i>risk</i> ?	Selected Examples of Adaptation/Mitigation Actions		
Increasing drought leading to increased evapotranspiration	Research	YES	YES			
and/or decrease in freshwater inflows which will cause increased	Promote Water Conservation and Reuse	YES YES		reaches of Galveston Bay; advocate for additional/ or base level inflow and		
salinity impacts and decreases in oyster reef habitat	Preservation/Conservation/ Restoration	YES	YES	preserve native nabitat		
Sea level rise and subsidence leading	Preservation/Conservation/ Restoration	NO	YES	Conserving lands to prevent saltwater		
to increased extent of saline waters	Research NO YES			intrusion into freshwater wetlands		
Increasing drought leading to increasing demand on water	Promote Water Conservation and Reuse	YES YES		Support for the statewide environmental flows		
resources; decrease in discharge to Galveston Bay	Implementation of WBPs	YES	YES	process; regional ecological plans		
Increasing drought leading to decrease in base flow of streams	Monitoring	NO	YES	Partner participation in the regional water planning processes to ensure the rules that govern the regional water plans better protect water for wildlife		
Increasing drought leads to increased demand	Promote Water Conservation and Reuse	YES YES		Partner participation in the regional water planning processes to		
leading to further reduction of base flow	Implementation of WBPs			govern the regional water plans better protect water for wildlife		

Stressors and Associated <i>Risks</i> Selected for Adaptation/ Mitigation	Potential Adaptation/Mitigation Action Strategies	Could the action reduce likelihood of the <i>risk</i> ?	Could the action reduce consequence of the <i>risk</i> ?	Selected Examples of Adaptation/Mitigation Actions	
Warmer summers lead to increased evapotranspiration.	Promote Water Conservation and Reuse	YES	YES	Riparian restoration; green infrastructure:	
which will decrease freshwater inflows	Preservation/Conservation/ Restoration	YES	YES	promote native habitat	
Sea level rise and subsidence leads	Preservation/Conservation/ Restoration	NO	YES	Refuges; living shorelines to prevent suspended	
to changing light attenuation	Research	NO	YES	from impacting light attenuation	
	Stakeholder Outreach: Alerts/Risk	YES	YES	Supporting projects	
Warmer summers	Stakeholder Outreach: Education	that manage invasive species range and spread			
of invasive species	Monitoring	YES	managing invasive species on properties/ public		
	Promote Native Habitat	lanus			
Warmer waters	Stakeholder Outreach: Education	NO	YES	Monitoring with water quality team for	
lead to a decrease in dissolved oxygen	Monitoring	NO	YES	education activities; educating marinas about	
	Research YES			design best practices to increase flow	
Warmer waters lead to increased stratification	Monitoring	NO	YES	Monitoring water temperature and stratification	
	Stakeholder Outreach: Alerts/Risk	YES	YES		
Warmer winters leads to <i>enhanced</i>	Stakeholder Outreach: Education	NO YES		Follow up with monitoring organizations and with	
survival of insect pests	Monitoring	species of concern (like Emerald Ash Borer)			
	Promote Native Habitat	YES	YES		
Ocean acidification leading to potential impacts on shellfish and other sedentary organisms that require calcium for exoskeleton	Research	NO	YES	Research on current state of Galveston Bay acidification	

Incorporating Adaptation/Mitigation Actions in the CCMP

Many of the adaptation/mitigation actions and strategies discussed above fit within the priorities and goals of the CCMP, which serves as GBEP's master planning document. The connections between the risks and the actions that will reduce the likelihood and/or consequences of those risks will facilitate prioritization and implementation of adaptation/mitigation actions by GBEP and its partners (Table 6). Below are several visual representations of the relationships between adaptation/mitigation actions and the GBP priorities and goals (Figure 6, Table 7). Many adaptation/mitigation actions could serve multiple GBP goals and mitigate several risks. Table 6 shows a detailed view of stressors, risks and potential adaptation/mitigation actions categorized by impact to the Galveston Bay CCMP goals. *Figure 6. Sankey Chart showing the relationships between stressors and adaptation/mitigation action grouping, color coded by GBP Priorities*

- Changes to land use and the built environment

Table 6: Adaptation/Mitigation Strategy Groupings vs. GBP Priorities/Goals								
GBP Priorities/Goals								
Engage Communities Engage Communities Engage Communities Ensure Safe Human and Aquatic Life Use: Increase public awareness of current public health risks/Reduce risk through WBPs Ensure Safe Human and Aquatic Life Use: Increase public awareness of current public health risks/Reduce risk through WBPs Ensure Safe Human and Aquatic Life Use: Reduce NPS and PS (including WWTFs and sanitary sewer system) pollution Inform Science -Based Use: Reduce NPS and PS (including modeling mollution WTFs and sanitary sewer system) pollution Inform Science -Based Use: Reduce NPS and PS (including mollution WTFs and sanitary sewer system) pollution Inform Science -Based Use: Reduce NPS and PS (including mollution The lower portion of the Galveston Bay watershed. Protect and Sustain Living Resources: Ensure adequate quantities of freshwater reach Galveston Bay Protect and Sustain Living Resources: Ensure adequate quantities of freshwater reach Galveston Bay								
Adaptation/Mitigation Grouping								
Stakeholder Outreach: Education	Х	X	X		Х		X	
Stakeholder Outreach: Alerts/Risk		Х			Х			
Monitoring	Х	X	X	Х	Х		X	
Implementation of WBPs	Х	Х	X	Х	Х	Х		
Preservation/Conservation/Restoration		X	Х	Х	Х	Х	Х	
Research			Х	Х	Х			
Promote Water Conservation and Reuse				X	X	X		
Promote Native Habitat							Х	

Table 7: Adaptation/Mitigation Strategy Groupings vs. Stressors										
Stressors	Chronic higher tides/nuisance flooding	Increase in extreme events (coastal flooding/storm surge)	Sea Level Rise + subsidence	Warmer Summers	Warmer Waters	Increasing Drought	Increasing Inland Flooding (largely rain-based)	Population Increase	Changes in land use and the built environment (infrastructure)	Ocean Acidification
Adaptation/Mitigation Grouping										
Stakeholder Outreach: Education	х	х	Х	х	х			Х		
Stakeholder Outreach: Alerts/Risk		Х		х	Х	Х	х			
Monitoring	Х	Х	Х	х	Х		х			
Implementation of Watershed Based Plans	Х	Х	Х	х		Х	х	Х	х	
Preservation/Conservation/Restoration		Х	х	х			х	Х		
Research		Х		х	Х	Х	х			Х
Promote Water Conservation and Reuse				х	Х	Х	Х		Х	
Promote Native Habitat				Х			x		x	

Tracking Projects that Include Adaptation/Mitigation Actions

The adaptation/mitigation action groupings above address adaptation/mitigation actions to mitigate the impacts of climate stressors on CCMP goals and priorities. In order to ensure the successful implementation of the Galveston Bay Estuary Action Plan, the adaptation/mitigation actions should be tracked over time. For future projects that include adaptation/mitigation actions, the resilience risks that are addressed and the frequency of reporting should be tracked, along with responsible parties and steps (Table 8). At the same time, actions that are aimed at specific risk reduction should be tracked (Table 9). Ideally, future projects and proposals should identify which risks are likely to be addressed by the goals of the project and which adaptation/mitigation actions will be taken and tracked over time. Project tracking with these metrics will enable GBEP and its stakeholders to integrate the Galveston Bay Estuary Resilience Action Plan into the CCMP and the projects that aim to support it.

Table 8: Tracking Selected Adaptation/Mitigation Actions

Adaptation/ Mitigation	Risk(s) addressed	Responsible party(ies)	Next steps	Reporting frequency
1.				
2.				
3.				
n.				

Table 9: Example: Tracking Risk Reductions

	Risk selected for adaptation/mitigation	Action(s) employed/completed
1.		
2.		
3.		
n.		

Conclusions

The future conservation and protection of Galveston Bay will be dependent on stakeholder decisions who have the knowledge, funding, and the will to adapt to changing conditions and plan and act accordingly. GBEP and its stakeholder experts have the knowledge, and now in the Galveston Bay Estuary Resilience Action Plan, a list of estuary resilience stressors, risks, and appropriate adaptation/mitigation actions to protect the GBEP GBP's goals and ensure a resilient Galveston Bay. The adaptation/mitigation actions identified and discussed above and the risks that will necessitate their implementation will also be included in the updated CCMP. GBEP's partners have already implemented some of these actions and strategies and others are in development. Including estuary resilience stressors and adaptation/mitigation strategies will make it easier to prioritize and fund projects that will improve the resilience of Galveston Bay. Appendix A: GBP-Plan Priorities and Action Plans (Figures from the Galveston Bay Plan, 2nd Edition, <u>https://gbep.texas.gov/galveston-bay-plan/</u>)

GBP Figure 12. Nonpoint Source Action Plan

GBP Figure 15. Point Source Action Plan

GBP Figure 17. Public Health Awareness Action Plan

GBP Figure 21. Habitat Conservation Action Plan

GBP Figure 23. Species Conservation Action Plan

GBP Figure 25. Freshwater Inflows Action Plan

GBP Figure 27. Stakeholder and Partner Outreach Action Plan

GBP Figure 29. Public Education and Awareness Action Plan

GBP Figure 31. Applied Research and Monitoring Action Plan

GBP Figure 33. Increase Access Action Plan

Appendix B: Consequence/Probability Matrix Organized by Stressor and by Consequence/ Probability for All Categories and Stressors

These are the IDs for the GBEP Plan Goals and Stressors used in the CP Matrices

GBP Priority	GBP Goal ID
Engage Communities	ECG
Ensure Safe Human and Aquatic Life Use: Increase public awareness of current public health risks/Reduce risk through WBPs	SAGWBP
Ensure Safe Human and Aquatic Life Use: Reduce NPS and PS (including WWTF and sanitary sewer system) pollution	SAGWNPS
Inform Science - Based Decision Making	ISG
Protect and Sustain Living Resources: Conserve, restore, and enhance vital habits in the lower portion of the Galveston Bay watershed.	PSGCRE
Protect and Sustain Living Resources: Ensure adequate quantities of freshwater reach Galveston Bay	PSGFI
Protect and Sustain Living Resources: Sustain and restore native species populations	PSGNS

Stressor	Stressor ID
Changes to land use and the built environment (infrastructure)	LU
Chronic higher tides/ nuisance flooding	NF
Increase in extreme events (coastal flooding/ storm surge)	EE
Increasing Drought	ID
Increasing Inland Flooding (largely rain- based)	IF
Ocean Acidification	OA
Population Increase	PI
Sea Level Rise + subsidence	SL
Warmer Summers	WS
Warmer Waters	WН
Warmer Winters	WW

Consequence/Probability Matrix by Stressor

	 EGG Warmer waters = increased bacteria SAGWBP Increased exceedances of bacteriological standards ISG Increased evapotranspiration - less freshwater inflow, compromised water quality ISG Potential for more & stronger tropical storms/hurricanes PSGCRE Warmer summers could expand range of invasive species. PSGFI Increased evapotranspiration will decrease freshwater inflows 	 SAGWBP Increased heat stress (education) ISG Heat stress to native populations ISG Changes in communities to more tropical composition PSGFI Harmful algal blooms are more likely to develop in warm, salty water. PSGNS Increased water temperatures would increase oyster predation and parasites PSGNS Warmer water temperatures have been linked to long-term decline in blue crab abundance and negative effects on white shrimp 		High	
	 ECG Heat stress ECG Increase in vibrio illnesses SAGWNPS Using more water for irrigation leading to increased runoff SAGWNPS Warmer summers will lead to warmer water, increased likelihood of fecal indicator bacteria, and increased frequency of water quality exceedances ISG Warmer waters lead to increased bacteria 	 ISG Essential food sources may die off ISG How warmer summers impact oyster reefs PSGF Increased evapotranspiration will increase salinity in upstream reaches PSGNS Heat stress to native populations and metabolic costs/mortality; changes to food webs PSGNS Increased salinity (from increased evaporation and decreased freshwater inflow) can impact the distribution, abundance, and productivity of native species PSGNS Life cycle stages (e.g., spawning) is influenced by environmental cues (temperature) PSGNS Shifts in fisheries populations, likely continued decreases in flounder but potential increases in range for snook and pompano 		Medium	Consequence
Varmer Summers	 PSGCRE Increased evapotranspiration which could lead to aquatic/subtidal species composition change PSGCRE Warmer summers will increase plant productivity, vertical accretion, and carbon sequestration. This should accelerate as mangroves become more predominant. 		 SAGWNPS Increased evapotranspiration – compromised integrity of water bodies 	Low	
essor: W	Ч ⁸ ІН	muibəM	ΓοΜ		
Stre	Occurrence)	likelihood (Probability of			

TCEQ Contract Number 582-19-90217 Galveston Bay Estuary Resilience Action Plan – Draft

	 ECG Heat Stress ECG Warmer waters lead to increased bacteria ECG Warmer waters lead to increased bacteria SAGWBP Increase in vibrio illnesses (increased communication on public health risks) ISG Increased evapotranspiration - less freshwater inflow; compromised water quality PSGCRE Decrease in dissolved oxygen PSGCRE Increased stratification SGGRE Increased stratification PSGCRE Increased stratification<!--</th--><th> ISG Unknowns: how does warmer water impact phytoplankton community composition? PSGFI Increased evapotranspiration will decrease freshwater inflows </th><th></th><th>High</th><th></th>	 ISG Unknowns: how does warmer water impact phytoplankton community composition? PSGFI Increased evapotranspiration will decrease freshwater inflows 		High	
	 ECG Increase in vibrio illnesses SAGWBP Increased bacterial growth, increasing bacteria load exceedances. ISG Warmer waters lead to increased bacteria & potentially other pathogens PSGCRE Increase in oyster predation and parasites 	 ISG Changes in communities to more tropical composition PSGF Increased evapotranspiration will increase salinity in upstream reaches PSGNS Oyster reef loss to dermo and oyster drilling predators PSGNS Correlation with drop in salinity and increase in lesions on bottlenose dolphins 	 SAGWBP Warmer temperatures may increase toxicity of pollutants due to increased metabolism rates SAGWNPS Increased bacterial growth, increasing bacteria load exceedances. ISG More users on the water for prolonged time (extent of the year) increasing exposure to contaminants/potential minor spills through accidents of small boats 	Medium	Consequence
Varmer Waters	1. PSGCRE Increased water temperatures could cause changes in phytoplankton community composition	 ISG Warmer water may affect the dynamics of salinity stratification (and possibly circulation?) within the estuary (warmer water expands) ISG Reduction in nutrient loading and productivity of estuary 	 PSGCRE Defining habitat characteristics like pH may be affected by water temperature 	Low	
Stressor: V	y of Occurrence) או <mark>ג</mark> ה	tilidsdor9) boo mulb9M	hiləxil voJ		

	 SAGWBP Increased Water conservation/ restrictions SAGWNPS Increased irrigation = increased runoff PSGCRE Increased evapotranspiration and/or decrease in freshwater inflows = increased salinity and decreases in oyster reef habitat PSGCRE loss of habitat for riparian spawning fish species PSGFI Increasing demand on water resources; decrease in discharge to Galveston Bay PSGFI Increase demand on groundwater = further reduction of base flow 	 ECG Decrease in water quality - less for dilution PSGNS Species may not tolerate new drought regimes PSGNS Increasing marine and invasive species including predators, parasites, and diseases including predators, parasites, and diseases PSGNS Increased favorable conditions for harmful algal blooms 		High	
	 SAGWBP Pollutant concentrations increase (less dilution) SAGWNPS Pollutant concentrations increase SAGWNPS Increased soil shrinkage will cause pipes to shift and crack leading to greater inflow and infiltration (I&I). ISG Less inflow - decimation of upper bay assemblages - Rangia, Vallisneria and oysters due to increased parasitism ISG Prolonged reduced freshwater input has long-term effects ISG Increased salinity in brackish habitats + salinization of freshwater habitats> loss of submerged aquatic veg ISG Increased chances of red & brown tides 	 ECG Increase in tree loss SAGWNPS Increasing bacteria load (less dilution) PSGCRE Area of suitable habitat decreases and limited to upper portion of estuaries. 	 PSGNS Increase in stranding events (e.g. marine mammals) and inundation of freshwater habitats. PSGNS Adverse effect for secretive marsh birds like rails in salt marshes if transition habitats not available. PSGNS Shifting vegetation community composition 	Medium	Consequence
r: Increasing Drought	 PSGCRE changes to sediment loads PSGCRE loss of seasonal wetlands 	 ISG Unknowns: does drought change habitat functionality? 	 SAGWNPS Older systems might have less pollution during a drought than a heavy rain event PSGCRE less water for restoration and enhancement 	Low	
essor	48iH	mulbəM	мот		
Stre	γ οξ Οςςαττέπςε)	hood (Probabili	lisyij		

TCEQ Contract Number 582-19-90217 Galveston Bay Estuary Resilience Action Plan – Draft

Likelihood (Probability of Occurrence) Low Medium High				
	ISG Unknowns: how does conversion of agricultural land impact Galveston Bay?		Low	
÷	÷.	1. 2.		
ECG Increased impervious surfaces	SAGWNPS Increase in impervious surfaces leads to increased runoff and alters pollutant pathways and residence time	SAGWBP Increased runoff SAGWNPS Loss of agriculture lands could change types and seasonality of NPS pollution	Medium	c
	1. 4, %, 2, 1.	÷		
ISI Increase in impervious surfaces leads to increased runoff of freshwater, will lead to more flashy system. Changes to land use and infrastructure (e.g., increase in impervious cover, increase in reservo storage, reservoir operations, etc.) alter the quantity, timing, and duration of inflows.	PSGCRE Increase in impervious surfaces leads to increased runoff an sediment loading instream and downstream estuary and covering of bottom plant communities PSGCRE Coastal barriers reduce tidal exchange and ultimately alter salinity and circulation patterns that influence habitats and the species inhabiting them PSGCRE Loss of native habitat due to development PSGCRE Loss of native habitat due to development psGCRE Reservoir operations can shift the timing and amount of peak inflows	PSGCRE Increased nutrient input and turbidity> decrease in seagrass and oysters	High	

Stressor: Changes to Land Use and The Built Environment (Infrastructure)

	 SAGWBP Bacteria in flood waters SAGWBP Exposure to pollutants during flood SAGWNPS Could increase erosion of streambeds, increasing sedimentation and decreasing width of riparian corridors PSGCRE Increased stream erosion and sediment loads PSGNS Changes in shallow water habitat and secondary impacts on juvenile stages of estuarine and marine organisms ISG Correlation with increase in lesions on bottlenose dolphins 	 SAGWNPS Contaminated sites may flood and discharge offsite 	1. ECG Wider spread of waterborne pathogens	High	
largely rain-based)	 SAGWNPS May cause more septic systems to fail - lead to long-term pollutant load increase ISG Changes in inflow regime which affects oyster and other species PSGCRE movement of invasive species (+/-) 	 ISG Unknowns: Impacts on estuarine wetland ISG Unknowns: how are superfund sites impacted by increased flooding? PSGCRE loss of habitat PSGCRE increase in frequency and intensity of decreased salinity events PSGCRE impacts for riparian fish spawning PSGRE impacts for riparian fish spawning PSGRE changes periodicity of freshwater inflows PSGNS Habitat loss, conversion, and migration hold implications for native species 	 PSGCRE changes to nutrient supply PSGFI Changes seasonality of freshwater inflows PSGNS Potential adverse effect for secretive marsh birds like rails in salt marshes if transition habitats are not available 	Medium	Consequence
r: Increasing Inland Flooding (I			 SAGWNPS Increased runoff: short-term pollutant load increase SAGWNPS Potential for increased overtopping and "leaking systems" releasing more pollutants PSGCRE low light due to increased sediment load 	Low	
esso	4 ₈ iH	muibəM	мот		
Str	of Occurrence)	o <mark>vilidedor9) boor</mark>	Likeli		

Irge)
SU
Ľ
sto
)g/
dir
00
Ŧ
Ista
cog
'ents
e S
ne
rer
ext
.⊑
ase
reg
lnc
:LC
esso
Stre

SAGWNPS WWTF will go offline 1. ISGI Reduction of positive impact more often during intense events PSGGREI movement of invasive systems) SAGWNPS Frequency of sanitary 2. PSGGREI movement of invasive systems) SAGWNPS Frequency of sanitary 3. PSGGREI movement of invasive systems) Septic systems) 1. PSGGREI increase in frequency an inflows Septic systems) 1. PSGGREI increase in frequency an inflows Septic systems) 2. PSGGREI increase in frequency an inflows Septic systems) 1. PSGGREI increase in frequency an inflows Septic systems) 2. PSGGREI increase in frequency an inflows Septic systems) 2. PSGGREI increase in frequency an inflows Septic systems 2. PSGGREI increase in frequency an intensity of frequency an intensity of frequency an intensity of frequency PSGCREI changes to nutrient 1. PSGII Changes seasonality of frequency Supply 2. PSGII changes seasonality of free inflows Supply 2. PSGII Low 2. PSGII Dow Medilutn	
 ISG Reduction of positive impact freshwater inflow PSGCRE movement of invasive si PSGFI Changes periodicity of free inflows PSGCRE increase in frequency an intensity of high salinity events PSGNS Habitat loss, conversion, migration hold implications for ne species PSGFI Changes seasonality of free inflows PSGNS Potential adverse effect fi secretive marsh birds like rails in marshes if transition habitats are available Meditiom 	
s of pecies shwater and and ative sshwater not	Consequen
 ECGI Increased flooding of property and habitat SAGWBPI Bacteria in flood waters SAGWBPI Exposure to pollutants during flood events SAGWDPI Increase in extent in tidal flooding could lead to new sources of pollution from floating tanks, runoff etc; ISGI Potential for increased spills/contaminants entering the bay system PSGCREI Increased stream erosion and sediment loads PSGCRI Increased stream erot loads PSGCRI Increased stream erosion and sedime	g

tressor:		mulbeM		
Sea Level Rise + S		 ISG Salinizes brackish areas> increases the demand for freshwater to maintain salinity regimes 	Low	
Sub		1. 9. 1.		
sidence	ECG Wetland loss ISG Reduction of positive impacts of freshwater inflow due to increased intrusion of saltwater. ISG Increase in bacteria levels from failing septic systems? PSGCRE changing spatial extent of available habitat	ISG Increased extent of marine water may impact the freshwater balance of the bay PSGCRE habitat conversion to open water PSGFI Loss of wetlands could impact quality of freshwater inflows PSGNS Increased extent of saline waters	Medium	Conse
	1. 9. 9. 9. 9. 9. 1. 1. 9. 9. 9. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	1. 5. 4. 3.		edn
	EGG Increased flooding of property and habitat SAGWBP Greater coastal wetland losses could occur (less filtration) SAGWDP3 Higher water tables/increase in extent in tidal flooding will drown coastal septic systems causing them to fail - lead to short-term and long-term pollutant load increases SAGWDP5 Contaminated sites may flood or have shoreline erosion SAGWDP5 Contaminated sites may flood or have shoreline erosion SAGWDP5 Greater coastal wetland losses (less filtration) PSGCRE Increased extent of saline waters PSGCRE Increased extent of saline waters PSGCRE Increased marsh flooding PSGCNS Increased marsh flooding PSGNS changing spatial extent of available habitat PSGNS classing spatial extent of available habitat PSGNS loss of restored and enhanced habitat due to drowning	ECG Increased storm surge SAGWNPS Potential increase of saltwater intrusion into wastewater pipelines, increasing water load and overwhelming water treatment capacity PSGCRE Increased marsh flooding PSGFI Less availability of groundwater (due to subsidence and saltwater intrusion) = more demand on surface water, decreased base flow PSGNS Changing light attenuation	High	ence

Stressor: Chronic higher tides/nuisance flooding

Stres	Likelihood (probability of Occurrence)				
sor: Ac	Ч ⁸ іН	muibəM	мот		
cidification		 SAGWNPS Ocean Acidification will lead to decreased pH which could impact mobilization of pollutants (e.g. metals) 		Low	
			 ISG Healthy freshwater flows needed to maintain pH balance in bays ISG Estuary acidification increases when riverine alkalinity export is reduced. Then reduced alkalinity export from the bays can decrease the buffer capacity of adjacent coastal ocean against future acidification. ISG Unknowns: does acidification in Galveston Bay impact oyster reefs? 	Medium	Consequence
	 PSGCRE Unknowns: Oysters in the Bay impacted by acidification ECG Unknowns: Loss of oyster reef habitat 		 PSGCRE Potential impacts on shellfish and other sedentary organisms that require calcium for exoskeleton 	High	

Consequence/Probability Matrix by All Categories and Stressors

All Risks Grouped: High Consequence, High Likelihood

- 1. EC|ECG|NF|EE|SL| Increased flooding of property and habitat
- . EC|ECG|WS|WH| Warmer waters lead to increased bacteria
- 3. EC|ECG|WH|Heat Stress
- 4. SA|SAGWBP|EE|IF| Bacteria in flood waters
- 5. SA|SAGWBP|EE|IF| Exposure to pollutants during flood events
- 6. SA|SAGWBP|ID|Increase need for water conservation and water restrictions
- 7. SA|SAGWBP|SL|Greater coastal wetland losses could occur (less filtration)
- 8. SA|SAGWBP|WS|Increased violations of bacteriological standards
- 9. SA|SAGWBP|WH|Increase in vibrio illnesses
- 10. SA|SAGWNPS|NF|Increase in extent in tidal flooding could cause more waste water infrastructure to fail
- 11. SA|SAGWNPS|EE|Increase in extent in tidal flooding could lead to new sources of pollution from floating tanks, runoff etc;
- 12. SA|SAGWNPS|ID|Increased human use of water for irrigation leading to increased runoff
- 13. SA|SAGWNPS|IF|Increase erosion of streambeds, increasing sedimentation reducing vegetated land available for filtration
- 14. SA|SAGWNPS|PI|Increased population leads to increase in sources of NPS pollutants
- 15. SA|SAGWNPS|SL|Higher water tables/increase in extent in tidal flooding will drown coastal septic systems causing them to fail
- 16. SA|SAGWNPS|SL|Contaminated sites may flood or have shoreline erosion
- 17. SA|SAGWNPS|SL|Greater coastal wetland losses (less filtration)
- 18. SA|SAGWM{S|PA| Unknowns: acidification in Galveston Bay impact oyster reefs
- 19. IS/ISG/LU/Changes to land use and infrastructure alter the quantity, timing, and duration of inflows.
- 20. IS ISG | EE | Potential for increased spills/contaminants entering the bay
- 21. IS | ISG | WS | Increased evapotranspiration less inflow, compromised water quality
- 22. IS|ISG|WS|Potential for more & stronger tropical storms/Hurricanes
- 22. PS | PSGCRE | EE | IF | Increased stream erosion and sediment loads
- 23. PS|PSGCRE|EE|Loss of habitat
- 24. PS|PSGCRE|OA|Unknown: Oysters in the Bay impacted by acidification
- 25. PS|PSGCRE|ID|Increased evapotranspiration and/or decrease in freshwater inflows increased salinity, decreases in oyster reef
- 26. PS|PSGCRE|ID|Loss of habitat for riparian spawning fish
- 27. PS|PSGCRE|PI|Loss of native habitat to development
- 28. PS|PSGCRE|SL|Increased extent of saline waters
- 29. PS|PSGCRE|SL|Changing light attenuation
- 30. PS|PSGCRE|WS|Warmer summers could expand range of invasive species.
- 31. PS|PSGCRE|WH|Decrease in DO
- 32. PS|PSGCRE|WH|Increased stratification
- 33. PS|PSGCRE|WW|Warm winters enhance survival of insect pests.
- 34. PS|PSGCRE|OA| Unknown impacts regarding oysters and bay
- 35. PS|PSGFI|ID|Increasing demand on water resources; decrease in discharge to Galveston Bay
- 36. PS|PSGFI|ID|Base flow in streams may decrease
- 37. PS|PSGFI|ID|Increase demand on groundwater = further reduction of base flow
- 38. PS|PSGFI|WS|Increased evapotranspiration will decrease freshwater inflows
- 39. PS|PSGNS|IF|Changes in shallow water habitat and secondary impacts on juvenile stages of estuarine and marine organisms
- 40. PS|PSGNS|SL|Increased marsh flooding
- 41. PS PSGNS SL changing spatial extent of available habitat
- 42. PS|PSGNS|SL|Loss of restored and enhanced habitat due to drowning
- 43. PS|PSGNS|WH|Warmer water could alter habitat distribution and lower dissolved oxygen in some area

All Risks Grouped: High Consequence, Medium Likelihood

- 1. EC|ECG|EE|Stakeholders may not have funds & time to partner due to dealing with more events/damages, etc.
- 2. EC|ECG|ID|Decrease in water quality less water for dilution
- 3. EC|ECG|SL|Increased storm surge
- 4. SA|SAGWNPS|NF|PI| Potential increase of saltwater intrusion into wastewater pipelines, increasing water load and overwhelming water treatment capacity
- 5. SA|SAGWNPS|IF|Contaminated sites may flood and discharge offsite
- 6. IS/ISG/EE/Unknowns: how do storms impact freshwater wetlands?
- 7. IS | ISG | WS | Changes in communities to more tropical composition
- 8. IS|ISG|WH|Unknowns: how does warmer water impact phytoplankton community composition?
- 9. IS/ISG/WW/Increased evapotranspiration less freshwater inflow, less water availability
- 10. PS|PSGCRE|LU|Increase in impervious surfaces leads to increased runoff and sediment loading instream and downstream estuary and covering of bottom plant communities
- 11. PS|PSGCRE|LU|Coastal barriers reduce tidal exchange and ultimately alter salinity and circulation patterns that influence habitats and the species inhabiting them
- 12. PS|PSGCRE|LU|Loss of native habitat due to development
- 13. PS|PSGCRE|SL|Increased marsh flooding
- 14. PS|PSGFI|LU|Reservoir operations can shift the timing and amount of peak inflows
- 15. PS|PSGFI|EE|Accumulated impacts from other stressors (e.g., pollution)
- 16. PS|PSGFI|SL|Less availability of groundwater (due to subsidence and saltwater intrusion) = more demand on surface water, decreased base flow
- 17. PS|PSGFI|WS|Harmful algal blooms are more likely to develop in warm, salty water.
- 18. PS|PSGFI|WH|WW|Increased evapotranspiration will decrease freshwater inflows
- 19. PS|PSGNS|EE|Changes in shallow water habitat and secondary impacts on juvenile stages of estuarine and marine organisms
- 20. PS|PSGNS|ID|Species may not tolerate new drought regimes
- 21. PS|PSGNS|ID|Increasing marine and invasive species including predators, parasites, and diseases
- 22. PS|PSGNS|ID|Increased favorable conditions for harmful algal blooms
- 23. PS|PSGNS|SL|Changing light attenuation
- 24. PS|PSGNS|WS|Increased water temperatures would increase oyster predation and parasites
- 25. PS|PSGNS|WS|Warmer water temperatures have been linked to long-term decline in blue crab abundance and negative effects on white shrimp
- 26. PS|PSGNS|WW|Potential increase in pests affecting crops and native habitats and wildlife
- 27. SA|SAGWBP|WS|Increased heat stress (education)
- 28. IS | ISG | WS | Heat stress to native populations

All Risks Grouped: High Consequence, Low Likelihood

- 1. EC|ECG|IF|Wider spread of waterborne pathogens
- 2. IS|ISG|WW|Changes in communities to more tropical composition
- 3. PS|PSGCRE|LU|PI| Increased nutrient input and turbidity --> decrease in seagrass and oysters
- 4. PS|PSGCRE|NF|increase marsh habitat range further upslope
- 5. PS|PSGCRE|OA|Potential impacts on shellfish and other sedentary organisms that require calcium for exoskeleton
- 6. PS|PSGCRE|PI|Increased nutrient input and turbidity -- > decrease in seagrass and oysters

All Risks Grouped: Medium Consequence, High Likelihood

1. IS	ISG WH Increased evapotranspiration - less freshwater inflow;
co	ompromised water quality
2. EC	ECG[LU]Increased impervious surfaces
3. E0	ECGPIIIncreased resource demands
4. E0	ECGISLIWetland loss
5. EC	ECGIWSIHeat stress
6. E0	ECG[WS]WH] Increase in vibrio illnesses
7. SA	SAGWBP SAGWNPS ID Pollutant concentrations increase (less dilution)
8. SA	SAGWBP WH WW Increased bacterial growth, increasing bacteria load
vi	olations.
9. SA	A SAGWBP WW Mosquito populations will not fall dormant as long with
e	tended summers
10. SA	ASAGWBPWWW Criteria for discharging may not be met
11. SA	SAGWNPS NF Increase in extent in tidal flooding could lead to new
so	purces of pollution
12. SA	SAGWNPS ID Increased soil shrinkage will cause pipes to shift and crack
le	ading to greater I&I.
13. SA	ASAGWNPS/IF/May cause more septic systems to fail - lead to long-term
р	ollutant load increase
14. SA	AISAGWNPSIPIIWWTF capacity may become an issue in already dense areas
w	here expansion may be difficult.
15. SA	AISAGWNPSIWSIUsing more water for irrigation leading to increased runoff
16. SA	SAGWNPS/WS/Increased likelihood of fecal indicator bacteria, and
in	creased frequency of water quality violations
17. SA	SAGWNPSIWW Extended growing season = increased irrigation/runoff
18. IS	IISGINFIUnknowns: how do chronic higher tides impact restored wetlands
19. IS	ISG EE Reduction of positive impacts of freshwater inflow
20. IS	ISGIDILess freshwater inflow - decimation of upper bay assemblages -
R	angia. Vallisneria and also bay wide ovsters due to increased parasitism
21 15	USCID Prolonged reduced freshwater input has long-term effects
21. 13	ad impacts the time it takes for the inflow regime to return to
a ".	a impacts the time it takes for the innow regime to return to
22 15	USCID Increased calinity in brackich babitats and freshwater babitats
22. 13	lise of submerged equatic vegetation
22 15	USG UD Uncreased chances of red & brown tides
23. 13	IISG/IE/Changes in inflow regime which affects ovster and other
24. 13	nocios
25 IS	USG PULIncreased demand places more pressure on available supply
26 15	IISGISI Reduction of nositive impacts of freshwater inflow due to
20. is	creased intrusion of saltwater
27 15	USG SU Increase in bacteria levels from failing sentic systems
27. 13	IISG/WS/WH/Warmer waters lead to increased bacteria
20. 13	ISG/WH/WW/Potential for more & stronger tronical
29. IS	orms/Hurricane
20 0	SIDSCOPEINELLoss of outer marsh habitat: uncertainty of ability of
ЗО. F.	otland to migrate inland
21 D	Classic to Inigrate Infant
51. P.	product in the second
22 0	JECCE INFIMay graate unfavorable babitet conditions more
52. P.	SPECKE INFINIAL Create unavorable nabitat conditions more
22 0	equently
55. P.	SIPSOCRETER IF Involvement of invasive species
34. P.	SIPSOCKE IID Hoss of ephemeral species and ephemeral habitats
35. P	DIPSOCKE [ID] Loss of tree and vegetative cover
36. P	SIPSOCKEIPIIIncreased recreational tishing pressure and trampling
37. P	SPECCE SLICHANGING SPATIAL EXTENT OF AVAILABLE NABITAT
20.0	
38. P	SIPSGCREIWHIIncrease in oyster predation and parasites
38. P 39. P	SIPSGCREI WH lincrease in oyster predation and parasites SIPSGFILEE Changes periodicity of freshwater inflows

41. IS|ISG|WW|Warmer winters increase invasive species in Galveston Bay

All Risks Grouped: Medium Consequence, Medium Likelihood

- 1. EC|ECG|ID|Increase in tree loss
- 2. EC|ECG|WW|Increase in invasive species
- 3. SA|SAGWNPS|LU|Increase in impervious surfaces leads to increased runoff and alters pollutant pathways and residence time
- 4. SA|SAGWNPS|ID|Increasing bacteria load (less dilution)
- 5. SA|SAGWNPS|PI|Increased quantity and decreased quality of stormwater from developed land VS undeveloped prairie or bottomland forest
- 6. IS|ISG|NF|Reduction of positive impacts of freshwater inflow due to increased intrusion of saltwater.
- 7. IS | ISG | IF | Unknowns: Impacts on estuarine wetland habitat
- 8. IS|ISG|IF|Unknowns: how are superfund sites impacted by increased flooding?
- 9. IS|ISG|SL|Increased extent of marine water may impact the freshwater balance of the bay
- 10. IS | ISG | WS | Essential food sources may die off food web impacts
- 11. IS | ISG | WS | Unknowns: do warmer summers impact oyster reefs?
- 12. IS|ISG|WH|Changes in communities to more tropical composition
- 13. PS|PSGCRE|EE|Increase in frequency and intensity of high salinity events
- 14. PS|PSGCRE|ID|Area of suitable habitat decreases and limited to upper portion of estuaries
- 15. PS|PSGCRE|IF|Loss of habitat
- 16. PS|PSGCRE|IF|Increase in frequency and intensity of decreased salinity events
- 17. PS|PSGCRE|IF|Impacts for riparian fish spawning
- 18. PS|PSGCRE|IF|Impacts for salinity and bottlenose dolphins
- 19. PS|PSGCRE|IF|Impacts for salinity and sea turtles
- 20. PS|PSGCRE|PI|Impacts from possible increased human-caused pollution
- 21. PS|PSGCRE|SL|habitat conversion to open water
- 22. PS|PSGFI|IF|Changes periodicity of freshwater inflows
- 23. PS|PSGFI|SL|Loss of wetlands could impact quality of freshwater inflows
- 24. PS|PSGFI|WS|WH|WW|Increased evapotranspiration will increase salinity in upstream reaches
- 25. PS|PSGNS|EE|IF|Habitat loss, conversion, and migration hold implications for native species
- 26. PS|PSGNS|SL|Increased extent of saline waters
- 27. PS|PSGNS|WS|Heat stress to native populations and metabolic costs/mortality; changes to food webs
- 28. PS|PSGNS|WS|WW|Increased salinity (from increased evaporation and decreased freshwater inflow) can impact the distribution, abundance, and productivity of native species
- 29. PS|PSGNS|WS|Life cycle stages (e.g., spawning) is influenced by environmental cues such as temperature
- 30. PS|PSGNS|WS|Shifts in fisheries populations, likely continued decreases in flounder but potential increases in range for snook and pompano
- 31. PS|PSGNS|WH|WW|Oyster reef loss to dermo and oyster drilling predators
- 32. PS|PSGNS|WH|Correlation with drop in salinity and increase in lesions on bottlenose dolphins
- 33. PS|PSGNS|WW|Warmer winters could expand range of invasive species; more temperate native species will move north

All Risks Grouped: Medium Consequence, Low Likelihood

1. SA|SAGWBP|LU|Increased runoff

- 2. SA|SAGWBP|WH|Warmer temperatures may increase toxicity of pollutants due to increased metabolism rates
- 3. SA|SAGWNPS|LU|Loss of agriculture lands could change types and seasonality of NPS pollution
- 4. SA|SAGWNPS|WH|Increased bacterial growth, increasing bacteria load violations
- 5. SA|SAGWNPS|WW|Eliminates freeze events that would normally prohibit long-term establishment of invasive species
- SA|SAGWNPS|WW|Warmer winters will lead to warmer water, increased likelihood of fecal indicator bacteria, and increased frequency of water quality violations
- 7. IS|ISG|NF|Increased influx of marine water on a more frequent basis may impact the freshwater balance
- 8. IS ISG |OA | Healthy freshwater flows needed to maintain pH balance in bays
- 9. IS|ISG|OA|Estuary acidification increases when riverine alkalinity export is reduced. Then reduced alkalinity export from the bays can decrease the buffer capacity of adjacent coastal ocean against future acidification
- 10. IS | ISG | OA | Unknowns: does acidification in Galveston Bay impact oyster reefs?
- 11. IS|ISG|WH|More users on the water for prolonged time (extent of the year) increasing exposure to contaminants/potential minor spills through accidents of small boats
- 12. PS|PSGCRE|IF|Changes to nutrient supply
- 13. PS|PSGFI|EE|IF Changes seasonality of freshwater inflows
- 14. PS|PSGNS|EE|IF|ID|Potential adverse effect for secretive marsh birds like rails in salt marshes if drier transition habitats are not available
- 15. PS|PSGNS|ID|Increase in stranding events (e.g. marine mammals) and inundation of freshwater habitats
- 16. PS|PSGNS|ID|Shifting vegetation community composition
- 17. PS|PSGNS|WW|Potential to increase return intervals for wildfires affecting vegetation structure and use by threatened or endangered species

All Risks Grouped: Low Consequence, High Likelihood

- 1. SA|SAGWNPS|EE|WWTF offline more often during intense events
- 2. SA|SAGWNPS|EE|Frequency of sanitary sewers infiltration events will increase SA|SAGWNPS|IF|Increased runoff from event will lead to short-term pollutant load increase
- 3. SA|SAGWNPS|IF|Potential for increased overtopping and "leaking systems"
- 4. EC|ECG|PI|More people to educate and promote water conservation.
- 5. IS | ISG | WW | Potential for prolonged time period of bacterial/pathogen presence
- 6. PS|PSGCRE|ID|Changes to sediment loads
- 7. PS|PSGCRE|ID|Loss of seasonal wetlands
- 8. PS|PSGCRE|IF|Low light due to increased sediment load
- 9. PS|PSGCRE|WS|Increased evapotranspiration which could lead to aquatic/subtidal species composition change
- 10. PS/PSGCRE/WS/WW/Increased plant productivity, vertical accretion, and carbon sequestration.
- 11. PS|PSGCRE|WH|Increased water temperatures could cause changes in phytoplankton community composition
- 12. PS|PSGNS|WW|Proliferation of mangroves in Galveston Bay is likely if deep freezes occur less often

All Risks Grouped: Low Consequence, Medium Likelihood

- 1. SA|SAGWNPS|OA|Ocean Acidification will lead to decreased pH which could impact mobilization of pollutants (e.g. metals)
- 2. IS | ISG | LU | Unknowns: how does conversion of agricultural land impact Galveston Bay?
- 3. IS | ISG | ID | Unknowns: does drought change habitat functionality?
- 4. IS | ISG | SL | Salinizes brackish areas --> increases the demand for freshwater to maintain salinity regimes
- 5. IS|ISG|WH|Warmer water may affect the dynamics of salinity stratification (and possibly circulation?) within the estuary (warmer water expands)
- 6. IS|ISG|WH|Reduction in nutrient loading and productivity of estuary
- 7. PS|PSGNS|WW|Potentially more suitable for manatees and less cold stunning events for sea turtles

All Risks Grouped: Low Consequence, Low Likelihood

- 1. SA|SAGWNPS|ID|Older leaking systems have less pollution w/decreased rainfall SA|SAGWNPS|WS|Increased evapotranspiration – compromised integrity of water bodies
- 2. IS | ISG | PI | NPS pollution increase
- 3. PS|PSGCRE|EE|Changes to nutrient supply
- 4. PS|PSGCRE|ID|Availability of water for restoration and enhancement
- 5. PS|PSGCRE|WH|Defining habitat characteristics like pH may be affected by water temperature
- 6. PS|PSGCRE|WW|Increased growing season could cause plant stress if they require a dormant period
- 7. SA|SAGWNPS|OA|Ocean Acidification will lead to decreased pH which could impact mobilization of pollutants (e.g. metals)
- 8. IS | ISG | LU | Unknowns: how does conversion of agricultural land impact Galveston Bay?
- 9. IS|ISG|ID|Drought changes habitat functionality
- 10. IS|ISG|SL|Salinizes brackish areas --> increases the demand for freshwater to maintain salinity regimes
- 11. IS|ISG|WH|Warmer water may affect the dynamics of salinity stratification
- 12. IS | ISG | WH | Reduction in nutrient loading and productivity of estuary
- 13. PS|PSGNS|WW|Potentially more suitable for manatees and less cold stunning events for sea turtles