Monitoring Ecosystem Indicators for Science-Based Restoration and Enhancement of Pelagic Habitats of Galveston Bay

Liu Lab

Background

- Estuaries are highly vulnerable to anthropogenic stressors and natural disasters, increased eutrophication, bottom-water hypoxia, invasive species, and hurricanes (Kemp et al., 2005; Kimmel et al., 2009; Liu et al., 2021).
- Zooplankton are often used as indicator species regarding climate change (Richardson, 2008).
- Galveston Bay (GB) in Texas has been subjected to extensive long-term human impacts and natural stressors for decades.
- Development of ecological indicators is highly needed for better management of the GB ecosystems.

Objectives

- Monitoring the long-term spatial and temporal variation in zooplankton dynamics along with environmental factors.
- Expanding previous efforts after Hurricane Harvey to extend the data collection on ecological indicators (e.g., zooplankton) in GB.
- Generating time series data for tracking ecosystem health in GB that can be used to inform science-based decisions relating to ecosystem services in GB.

Galveston Bay Line (GBL)

Protocols

Pre Cruise	Onboard	Post Cruise
-Label jars and make 10% buffered formalin -Ensure YSI calibration -Account for log sheets	 Record station information Water Sample Collection Environmental data measurement 	-Electronically backup sampling data -Chlorophyll-a measurement -Store zooplankton samples
-Check out Chl- a water bottles -Follow checklist and ensure proper procedure has been followed	-Zooplankton and oyster sample collection	-Zooplankton sample processing -Oyster genetic analysis

ITEM	QUANTITY	Person 1	Person 2
Net (200mm)	1		
Net (100mm)	1		
Codend	2		
Spare Net	1		
Spare Flowmeter	1		
Bucket	1		
Water bottle	5		
Chlorophyll sensor	1		
Jars with formalin	10		
Jars with ethanol	5		
Wash bottle with ethanol	2		
Spare jars	6		
YSI	1		
Cooler with ice	1		
Gloves	1		
Pens and notebook	1		
Log sheets	10		

 Mathing boyon biduans for Science Bud Ensiones and Balancement of Diage Tables Tables

Monthly Sampling

Sample Processing

Data Presentation: Cruise-based hydrographic profiles

- Data taken using YSI Pro30.
 - From October 2024 cruise
- Surface to bottom

Data Presentation: Bay-wide time series

Average bay-wide environmental patterns from September 2022 to November 2024.

Data Presentation: Site-based zooplankton data

- 1. Density
- 2. Community structure
- 3. Species composition

Data Analysis:

Site-based comparisons

Comparison of the mean difference in copepod diversity by station between 2023 (left) and 2024 (right).

Data Analysis:

Lining environmental variables with zooplankton

Progress Summary: (September 2022-present)

- 26 monthly cruises completed
- 15 field volunteers
- 260 total samples collected
- 140 samples processed
- 120 samples yet to be processed
- 7 conference presentations
- 5 undergraduate students and 2 highschool students involved

Fun Moments of Research!

Ocean Science Meeting 2024 Ecological Integration Symposium 2024 TAMUG Symposium 2024 Houston Regional Ecology and Evolution Symposium 2024

Goals Ahead

- Sampling along the GBL will continue into May of 2025.
- Finish processing all remaining samples.
- More in-depth statistical analyses of data.

Thank You!

